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Abstract

We introduce a scalable and broadly applicable method to compute accurate
global solutions of high-dimensional dynamic stochastic models. Our approach
leverages the tensor train format for function approximation, exploiting latent low-
rank structures commonly present in economic models. While able to capture com-
plex nonlinearities, the number of parameters of the tensor train approximation
(TTA) grows only linearly in dimensions, significantly mitigating the curse of di-
mensionality. We show that TTA can be integrated naturally into standard itera-
tive solution schemes, can capture irregularly shaped ergodic sets, is compatible
with the endogenous grid method, makes quasi-analytical computation of expec-
tations possible, and enables spectral solutions of continuous-time models, all in
high dimensions. We illustrate the scalability of TTA by solving international real
business cycle models of increasing dimension at only moderately increasing com-
pute time without deteriorating accuracy. We demonstrate the versatility of TTA
by solving heterogeneous agent models with large aggregate shocks. To approx-
imate the wealth distribution efficiently, we introduce a moment-selection proce-
dure that identifies the most informative moments from simulated data. In a model
with wealth-tax shocks, the use of the first nine such moments as inputs to TTA re-
duces approximation errors by one order of magnitude relative to using only mean

wealth.
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1 Introduction

Macroeconomic research has, over recent decades, increasingly focused on the role of
heterogeneity, which has dramatically increased the complexity of solving the respec-
tive models. As a result, most studies have relied on perturbation techniques for ag-
gregate dynamics, which, however, have limited accuracy beyond the neighborhood
of the expansion point.! Addressing this issue calls for a global solution approach,
which, however, is challenged by the curse of dimensionality. Recent advances aimed
at overcoming that challenge fall mainly into two categories, sparse grids? and neu-
ral nets.® Yet, no single dominant technique has emerged due to inherent trade-offs.
Sparse grid approaches, while robust and effective in medium dimensions, require too
many points in high dimensions and lack flexibility in efficiently fitting ergodic sets.
Neural networks, in contrast, are highly flexible and scalable, yet often exhibit overfit-
ting, noisy solutions, and fragile convergence behavior.

This paper introduces a novel approach to solving high-dimensional economic mod-
els. It proposes tensor train approximation (TTA), which makes the use of tensor prod-
uct bases in high dimensions possible, despite the exponential growth in the number
of basis coefficients. It does so by approximating the d-dimensional tensor (or array)
of basis coefficients by d separate 3-dimensional tensors, thereby reducing parame-
ter growth from exponential to linear. TTA exploits latent low-rank structures in the
basis coefficients of the tensor product basis and can efficiently and robustly be im-
plemented with an alternating least squares (ALS) scheme. With this method at hand
we can enjoy the upsides of tensor-product based approximations even in high di-
mensions. First, least-squares approximation of basis functions is grid-free and highly
flexible, thus allowing for arbitrary ergodic sets and for applying the endogenous grid
method (EGM) in high dimensions. Second, TTA features analytic integration and dif-
ferentiation, which enables fast and exact computation of expectations and allows for
spectral solutions of continuous-time models.

Compared to sparse grids, TTA offers much greater flexibility as it is not restricted
to regular grids. Compared to neural networks, it runs much lower risk of overfit-
ting and fragile convergence behavior due to less expressivity. Compared to both ap-
proaches, TTA allows for a more efficient approximation of economic policy functions,

which often exhibit low curvature regions, smoothness, symmetry, and limited cross-

IFor discrete-time linearizations, see Reiter (2009), Auclert et al. (2021), and Bayer and Luetticke
(2020). In continuous time, based on Achdou et al. (2021), Ahn et al. (2018) provide linearizations of the
Kolmogorov Forward Equation. A growing literature explores higher-order perturbations, including
Bilal (2023) in continuous time, Bhandari et al. (2023), Bayer et al. (2025) in discrete time.

2Examples include Krueger and Kubler (2006) on sparse grids, Judd et al. (2014) on dimension-
adaptive grids, Brumm and Scheidegger (2017) on locally adaptive grids, and Schaab and Zhang (2022)
on adaptive sparse grids in continuous time.

3Notable contributions include Maliar et al. (2021), Azinovic et al. (2022), and Han et al. (2021).



dimensional interactions. As the TTA framework is agnostic to the choice of basis
functions, this choice offers additional flexibility in adopting the algorithm to the char-
acteristics of policy and value functions in specific applications.

To demonstrate the flexibility, efficiency, and scalability of TTA in solving dynamic
economic models, we first apply it to the international real business cycle (IRBC) model
as specified in Brumm and Scheidegger (2017). For the smooth version of the model we
use a polynomial basis, which turns out to deliver high accuracy at modest polynomial
order. For the non-smooth version, with occasionally binding irreversible-investment
constraints, we employ a piecewise linear hierarchical basis. In both model versions
the computational time increases only by two orders of magnitude between the 11- and
51-dimensional cases, while the average Euler error remains well below 0.001% (0.01%)
in the smooth (non-smooth) case.* In addition to excellent scaling behavior, the IRBC
model allows us to showcase two powerful features of TTA. First, quasi-analytical
computation of expectations, which dramatically improves both computational per-
formance and accuracy. Second, a high-dimensional endogenous grid method that
speeds up the algorithm further.

To illustrate the broad applicability of TTA, we also apply it to heterogeneous agent
models in continuous time. To ensure that the distribution — the primary source of
multidimensionality in these models — meaningfully affects household decisions, we
introduce large wealth tax shocks. We find that in the absence of such large aggregate
shocks, the mean suffices to summarize the distribution. After introducing a stochastic
wealth tax of 20% occurring with a 2.5% probability per quarter, however, additional
moments are required to maintain sufficient accuracy. Incorporating additional dis-
tributional moments, selected using a novel a posteriori model reduction procedure,
based on dynamic mode decomposition, substantially mitigates the master equation
errors. Going from the three dimensional specification (with one distributional mo-
ment) to the eleven dimensional specification (with nine moments), reduces the aver-
age error by one order of magnitude. The heterogeneous agent application demon-
strates two key insights. First, TTA can effectively handle the workhorse models of
modern macroeconomics, even in the presence of large aggregate shocks. Second, TTA
enables spectral solutions of continuous-time models.

All in all, the different applications presented in this paper demonstrate that TTA
is a scalable, flexible, and broadly applicable method to compute accurate global so-
lutions of high-dimensional dynamic stochastic models. We believe that TTA adds a

great new tool to macroeconomists’ toolbox — a method that might turn out to be the

4By comparison, it is very hard to bring errors down to such levels with (adaptive) sparse grids, see
Figures 8 and 11 in Brumm and Scheidegger (2017). Moreover, sparse grids require (even when only a
level three grid is employed) an increase in computation time of more than four orders of magnitude for
such an increase in dimensionality, see Figure 15 in Brumm and Scheidegger (2017).



most efficient and practical choice for many applications that require global approxi-
mation yet feature latent low-rank structures that TTA can economize on much better
than other global methods.

Related Literature. This paper connects to two strands of the literature. The first is
on global solution techniques for high-dimensional economic models, including het-
erogeneous agent models; the second is on tensor decomposition methods in general,
and on the tensor train decomposition in particular.

Recent advances in global solution methods for dynamic stochastic economic mod-
els can broadly be categorized into grid-based methods and machine learning ap-
proaches. A prominent grid-based approach is the use of sparse grids, which sig-
nificantly mitigate the curse of dimensionality by reducing the exponential growth
of grid sizes. Krueger and Kubler (2006) introduce sparse grids with polynomial ba-
sis functions to economics. Judd et al. (2014) extend this framework by incorporat-
ing anisotropic grids and adaptive domain selection. Brumm and Scheidegger (2017)
turther advance the method by employing hierarchical basis functions, enabling local
adaptivity and thereby adding another layer of sparsity. Schaab and Zhang (2022) ap-
ply adaptive sparse grids to continuous time models. Brumm et al. (2022) provide an
overview of the use of (adaptive) sparse grids in economics.

A growing literature applies machine learning techniques in general and (deep)
neural networks in particular to approximate value and policy functions in dynamic
models. Maliar et al. (2021) and Azinovic et al. (2022) demonstrate that deep neural
networks can be trained to solve Bellman equations and first-order equilibrium con-
ditions, even in models with high-dimensional state spaces. These techniques have
enabled a range of applications, including household finance (Gorodnichenko et al.,
2021), monetary policy (Nufio et al., 2024), climate change (Folini et al., 2025), asset
pricing (Azinovic and Zemlicka, 2024), and structural estimation (Kase et al., 2022).
While much of this work focuses on discrete-time models, other studies consider mod-
els in continuous time. For instance, neural networks have been applied to continuous-
time economic models models (e.g., Ferndndez-Villaverde et al., 2020; Gopalakrishna,
2021; Sauzet, 2021), finance models (Duarte et al., 2024), and to problems formulated
as backward stochastic differential equations (Huang, 2023). A related set of contribu-
tions applies machine learning techniques to heterogeneous agent models. Ferndndez-
Villaverde et al. (2023) use neural networks to approximate the perceived law of motion
in rational expectations models. Kahou et al. (2021) exploit symmetries in the distribu-
tional moments to simplify high-dimensional expectations. Han et al. (2021) propose
a deep learning framework to approximate value functions while jointly choosing op-
timal distributional statistics. Payne et al. (2025) adapt similar tools to search-and-

matching environments. In continuous time, Gu et al. (2024) solve the master equation
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in heterogeneous agent models using deep learning. Ferndndez-Villaverde et al. (2024)
provides a comprehensive overview of this emerging field.

In models with a continuum of heterogeneous agents, a key challenge is to com-
press the infinite-dimensional asset distribution without losing too much relevant in-
formation. Approaches range from relying just on aggregate capital as in Krusell and
Smith (1998) to global polynomial representations as in Schaab (2020) and even full
histogram discretizations as in Gu et al. (2024). To select informative state variables,
Ahn et al. (2018) apply an a priori model reduction technique, while Han et al. (2021)
jointly learn optimal generalized moments and solve the model equations. We propose
an a posteriori simulation-based model reduction approach relying on dynamic mode
decomposition (DMD).

The second strand of the literature to which this paper contributes concerns tensor
train (TT) methods for high-dimensional problems. Following the seminal work of Os-
eledets (2011), the TT decomposition has gained significant attention as a tool for rep-
resenting high-dimensional tensors with linear scaling in dimensionality. Holtz et al.
(2012) propose an efficient and numerically stable alternating least squares (ALS) algo-
rithm for optimization problems in the TT-format. Grasedyck and Kramer (2019) study
optimal rank selection for tensor decompositions, offering complementary strategies to
enhance the convergence and stability of ALS-type methods. Gorodetsky et al. (2019)
develop a continuous analogue of the TT decomposition, enabling the representation
of multivariate functions rather than discrete arrays. Bigoni et al. (2016) introduce a
spectral tensor train decomposition that combines the TT structure with spectral poly-
nomial approximation, further improving accuracy in function approximation. Recent
work has applied TT techniques to the solution of high-dimensional PDEs and control
problems. Dektor et al. (2021) develop a rank-adaptive method that combines func-
tional TT expansions with a dynamic algorithm that adjusts ranks during time inte-
gration. Dolgov et al. (2021) apply TT methods to solve high-dimensional Hamilton-
Jacobi-Bellman equations, demonstrating their potential in optimal control problems.
Richter et al. (2021, 2024) extend TT-based solvers to parabolic PDEs and compare their
performance favorably to neural network-based approaches, emphasizing robustness
and interpretability. Bachmayr (2023) offer a comprehensive review of low-rank ten-
sor techniques, including TT formats, covering theoretical underpinnings, numerical
algorithms, and applications to PDEs and high-dimensional optimization.

2 Tensor Train Approximation

This section explains how to approximate multi-dimensional functions via TTA. First,

we show how to write the coefficients of a tensor-product basis for approximating d-



dimensional functions as an order d tensor. Second, we demonstrate how to alleviate
the curse of dimensionality by approximating the latter with a so-called tensor train
composed of d different order three tensors. Third, we provide an ALS algorithm for
computing the coefficients of such a TTA efficiently and robustly. Finally, we point
out that derivatives and integrals of TTAs can be computed analytically. In Appendix
A we show that the TTA algorithm is a special case of a broader class of quadratic
problems that can be minimized efficiently by ALS. We construct another special case

of that class in Section 4 when solving master equations.

2.1 Tensor Representation of Basis Coefficients

To approximate a multi-dimensional function, f : RY - R, d > 1, the most straight-
forward approach is to represent it as a product of one-dimensional basis functions.
Assuming, for ease of exposition, that all dimensions are treated equally, we allow for
m one-dimensional basis functions, ¢y, ..., ¢, where ¢; : R — R. Thus, to approxi-
mate f at x € R?, denoted by F(x), we evaluate m - d basis functions Gy - - - ¢i, with
ip =1,...,mand k = 1,...,d° To map these basis functions to the corresponding
scalar F(x), we define an order d tensor A containing all basis coefficients. An order d
tensor is a multidimensional generalization of a matrix. The entry A[i; ... ;] indicates
the weight by which the product of the respective basis functions contributes to the
value of F(x):

.F(X) = Z Z A[il,...,id] -4)1'1(9(1) '...~§bid(xd). (1)
i1=1 iy=1

As A contains weights for all permutations of bases ¢, ..., ¢, across d dimensions
it consists of m“ entries and is thus clearly susceptible to the curse of dimensionality.
Computing all its entries becomes rapidly infeasible as d increases. However, doing
so might not be necessary for achieving an accurate approximation. Instead of using
A in its entirety, we can employ a lower-dimensional object to approximate it. This
is exactly what TTA does, as we explain next. Of course, such an approach is only
promising if A possesses a latent low-rank structure. In economic applications this is
often the case, as the applications in Sections 3 and 4.

2.2 Tensor Train Format

Following Oseledets (2011), we approximately factorize an order-d tensor A as the
product of d order-three tensors Wi, each of size rj_q1 x m X rj, withr; > 1,79 =r; = 1.

5In the applications below, we use polynomial basis functions and piecewise linear hierarchical basis
functions.



Wecall T = ( wt ..., Wd) the tensor train decomposition of A and W' a tensor core or
wagon of the tensor train. The ranks rg, ..., 7; govern the size of the wagons W', and
control the dependencies across wagons. TTA approximates each entry of A through a
chain of contractions over the intermediate indices linking consecutive cores. To define
how exactly it does so, we employ the so-called Einstein convention, summing over re-
peated indices and letting the free indices determine the output tensor’s shape:®

A~ (Wlllh W2112]2 e M/]ij’zlidfl]'dfl ' WJilid)il...id : (2)
Suppose d = 3, m = 3, r = 2, then we are contracting a 3 X 2 matrix witha 2 x 3 x 2
tensor to obtain a 3 X 3 x 2 tensor, which we then contract with a 2 x 3 tensor to obtain
a 3 x 3 x 3 tensor. In this small example, the tensor train has 24 free parameters, just
slightly less than the 27 of A. Yet with d = 10, m = 3, r = 2, the tensor train format
already reduces the degrees of freedom from 59.049 to 108. In general, when all basis
sizes equal m as assumed above’ and the ranks satisfy r, < r, the number of free
parameters of the TTA 7 is bounded by dmr? as compared to m? for A. Thus, the TTA
approach alleviates the curse of dimensionality: with fixed m and r, the number of
parameters grows linearly instead of exponentially in d. Given a tensor train 7, we

can express an approximator of f as follows:

FoT) = (Wi o(n)i) - (Whi - #(2)s) -

Jij2

(W), O
Thus, in each dimension ¢ we evaluate the basis functions, obtaining the vector ¢(xy) =
(¢1(x¢), ..., ¢m(x)), which we then contract with the core W’ resulting in an order-
two tensor, except in case of / = 1 or / = d where we get an order-one tensor other-
wise. These d tensors are then contracted successively with each other to finally obtain
the scalar F(x; 7). Evaluations of the approximator are of computational complexity
O(mdr?); thus, function evaluations scale efficiently in dimensions d. To convey the in-
tuition for TTA, we introduce diagrammatic notation borrowed from physics. Nodes
represent cores and edges illustrate summations. Figure 1 provides a diagrammatic

illustration of the decomposition of A and the tensor train approximator F (x; 7).

®We use the notation as follows: For all tensors involved in contraction we explicitly denote their
dimension indices. If an index present in the original tensors is missing in the result, this implies sum-
mation over that index. For example the contraction of two consecutive cores is written as

3

I 2
u[]1'12'13']3]_(V\]flizjz"/\/fzisj% 112,13, j3] = Z ]112]2[7112]2 ]2%]3”213]3}

J1i2i3f3 =1

Indices in brackets signal specific entries of the tensor, while indices in lower-subscripts denote all en-
tries over this dimension of the tensor.

"Note that basis sizes m need not be uniform across cores for the method to work. In some of the
applications below, basis size will vary across dimensions.



Figure 1: Tensor Train Formulas and Diagrammatic Notation

A~ (W}l;l W2, Wfi—lid)il...id FoT) = (Wl-llhgl)(xl)il)h.,..- (V"fi,1id‘/’(xd)fd)jd,l
w! r1 W? rp rq—1 ’ ' 1 w2 r2 Td—1 we
Tml Tmz my Tml Tmz mg
¢(x1)  ¢(x2) P(xq)
(a) TT-Decomposition of A (b) TT-Approximator JF(x; T)

Diagrammatic tensor train notation. Filled nodes Wl ... W9are TT wagons; horizontal lines carry the
TT ranks ry; downward lines are indices of size m. Left: the coefficient tensor A represented as a tensor
train. Right: F(x; 7) obtained from the same chain by contracting with the local basis vector ¢(xy). The
expressions above each panel spell out the contractions in index form.

2.3 Optimizing Tensor Trains — The TTA Algorithm

We now present an algorithm for TT-based function approximation. It computes a TT
T such that F(x; T) fits the sample points {(x",y")}N_; € R? x R in a least squares
sense. We first formulate the associated least-squares problem and then introduce the
Alternating Least Squares (ALS) scheme for solving it. We denote the resulting TTA
with basis sizes m and ranks r by T = A (m,r, {x",y"}N ).

Optimization. For given basis shape m and rank r, we fit the TTA approximator
F(x;T) by choosing a tensor train 7 = (W',...,W%) to minimize the regularized

least squares error on the sample set {(x", ")} ;:
L& Ll NI Lk
aming ) [y = FGWE W[+ A ) [IWHE, @)
LN N2 k=1
where A is the regularization parameter, and || - || is the Frobenius norm. In the above

problem the coefficients of different cores interact multiplicatively making the global
problem non-convex. Following Holtz et al. (2012), we use an alternating least-squares
(ALS) scheme to circumvent this problem. Fixing all cores except one, W, makes the
mapping from WX to F(x'; W1,...,WK,...W9) linear, so finding the optimal W* re-
duces to a simple least-squares problem:

S . .
min 1Y Ly’ = F W Wi W) B A1 (5)
i=1

Exploiting this insight, ALS sweeps over the cores, left to right, and back, solving the
local subproblems until convergence. In what follows, we discuss how the single-core
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subproblem (5) can be written in vectorized form and how the cores can be orthogonal-
ized for numerical stability. Algorithm 1 presents the complete TTA algorithm, while

Figure 2 sketches the algorithm in diagrammatic notation.
Vectorization. The single-core subproblem (5) can be written as

min lly — B3+ AlloN ©
where vF = vec (Wk) represents the wagon to be optimized, and B¥ contains all infor-
mation about other wagons and about basis function evaluations at all sample points.
B is constructed as follows: First, let X’ il,f . = ¢, (x) denote the basis values in dimen-
sion k for sample point 7. Then define the left and right stacks, £F and R, starting
with £ = R =T € RN and recursively proceeding with

k_ (k=1 k-1 k=1 k_ (wktl . yktl | pktl
L= (E]'kfzn W]‘kfzikfl]‘kfl Xlkm)]-kln’ R (W]k1k+1]k+1 X1k+1” R]k+1n>]~kn' @)
Finally, define

, (8)

Jk—in  “ign Jin

5= (Ek X R >"fk1ikfk

and reshape it into a matrix BX € RN*("e-177k),

Orthogonalization. To maintain numerical stability, Holtz et al. (2012) propose to
keep a left-orthonormal prefix of cores and a right-orthonormal suffix during the ALS
sweeps. For the k-th core WX define its left and right unfoldings by grouping indices

unfy (WX) € RUe1m0>7 unfp (W) € RUE™) %71, 9)
We call WF left-orthonormal and right-orthonormal, respectively, if it satisfies:
unfy (WS Tunf; (WX) = I, unfr(W*)Tunfg (W) = I. (10)

During a left-to-right sweep we enforce left-orthonormality via a (thin) QR decompo-
sition,
unf (W) = QR, Q'Q =1, (11)

denoting the outcome by [Q,R] = qrd(unf;(W¥)). We then reshape Q, res(Q) <
R-1%mcx1% and set WK .= res(Q). The triangular factor, R, is absorbed into the
next core, Wkt = res (unfg (Wkﬂ) -RT), so that the overall tensor remains un-

changed but the next subproblem is better conditioned. In the right-to-left sweep



right-orthonormality is analogously enforced. Details of the procedure are given in
Algorithm 1 and displayed in Figure 2.

Algorithm 1 Tensor Train Approximation (TTA)

Require: Basis dimensions m = (my,...,my); ranks v = (rq,...,r5) withrg =1y = 1;
data points {x",y"}N_| with x" € R? , y" € R; initial cores W1,..., W4 with WK €
R"=1*">7k; regularization A.

Alternating Least Squares
Build initial stacks £, R¥ using equation (7).

Set & = coand € = oo.
while € > ¢ do > Macro-Iterations (sweeps)
fork=1,...,d—1do > First Half-Sweep
Compute B¥ using equation (8).
Solve ¥ := arg min, || B¥v — y||3 + A|[|[3.
Compute [Q, R] = qrd (unfy (res(v¥))).
Set WK := res(Q), W1 := res (unfg (WK*1) - RT).
Update left stack £F+! using equation (7).
end for
fork=4d,...,2do > Second Half-Sweep
Compute BF using equation (8).
Solve ¥ := arg min, || B¥v — y||3 + A|[|[3.
Compute [Q, R] = qrd(unfg(res(v¥))).
Set WK := res(Q), W1 := res (unf, (WF=1) - RT).
Update right stack R*~! using equation (7).
end for
Compute & = ||y — §||2, sete := ¢ — & and & := ¢.
end while

Return Tensor train approximation 7 = A (m,r, {x",y"}N ) = (W}, ..., Wd).

2.4 Analytic Differentiation and Integration

As it will become extremely useful below, we now point out that function representa-
tions in TT-format admit efficient rules for differentiation and integration. Let F(x; T)
be a TT approximator, and let ﬁkk—l and R;-‘k be the left and right stacks obtained by
contracting all cores except the k-th with the local basis evaluations as in equation (7).
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Figure 2: Visualization of an ALS Iteration

W2 rg_qg WA wi W2 r
1 2 2 T Z - 51 i rn o Ta
i [ ICRRCIRE s
1 2 d 1 2 d
4 1 I//V)\ 72 ra—1 W W r KV\ 72 ra—q V.
| R (VS (T R
A7l d 1 Ard
VY 1 2 Ta—1 W W 1 2 Td—1 W
IO fo | T I
7l 2 d 1 2 vd
Weor Vo ria W W Vo riaa W
A7l A2 d A2 Ard
VY r va\ ) Ta—1 W " va\ 2 Td—1 W
IO Toa | T T
First Half Sweep Second Half Sweep

Mlustration of one iteration of alternating least squares (ALS). A forward (left-to-right) half-sweep de-
picted on the left followed by a backward (right-to-left) half-sweep depicted on the right. Hollow
nodes indicate the yet-unknown subproblem solution at the current position; filled nodes indicate the
just-solved subproblem; an upward (downward) sloping texture marks a right- (left-) orthonormal core.

We can then take the derivative of F(x;7 ) with respect to x; by replacing the basis

vector in dimension k with its derivative, and contract the cores in the standard way:

I"F(x;T) k k n k
dxy =L Wi (axk(l)(xk))ik Ry (12)

To calculate the indefinite integral of F(x;7) with respect to x; one simply replaces
the basis vector in dimension k with its anti-derivative:

[FeaTydn =l W ([owdx) RE 4 Cx, (13)

iy

where C(x_g) is the integration constant that may depend on all variables except x.
For definite integrals, we get:

/ bkf(x; T)dx, = K - wk (@(b) — P(ar)), - R, @ =¢. (14

Jee1 " jk—1ikgk
k

The formulas in (12)—(14) reveal that partial derivatives and one-dimensional integrals
have the same asymptotic cost as function evaluations, since ¢(xy) is merely replaced

by 0% ¢(xx) or ®(xy). This fact will prove extremely useful in two respects: First, it will
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allow us, in Section 3, to compute expectations in high-dimensional models both accu-
rately and efficiently. Second, it will allow us, in Section 4, to solve partial differential

equations as apparent in continuous-time heterogeneous-agent models.

3 Solving High-Dimensional IRBC Models with TTA

To demonstrate the accuracy and scalability of the TTA approach, we now apply it to
the international real business cycle (IRBC) model, as presented in Brumm and Schei-
degger (2017). After briefly describing the model, we explain how TTA allows for
quasi-analytical computation of high-dimensional expectations. We then show how
TTA can naturally be embedded in the EGM alorithm and report results on the ac-
curacy and scalability of the resulting algorithm as applied to both the smooth IRBC

model and a non-smooth version of it.

3.1 IRBC Model

Physical Economy. The model features M countries, indexed by j = 1,..., M, each
utilizing its capital stock to produce output via Cobb-Douglas production with fixed
labor supply. The output good can be allocated to either consumption, ¢j, or invest-
ment, x;. Consumption generates utility through an additively separable utility func-
tion with discount factor p and per-period utility function of the CRRA type with
risk aversion 7}, varying across countries. Investment is subject to adjustment costs
ki-¢- gjz/ 2, where g; = k;./ ki —1and ¢ > 0. Additionally, capital depreciates at a rate
0 > 0. Countries productivity is given by

Ina; = plna; +o(e +2'), (15)

where the country specific shocks, ¢/, and the global shock, z’, are assumed to be i.i.d.
standard normal shocks that are independent both across time and from one another.
We parameterize the model as Brumm and Scheidegger (2017), with the exception of
a lower depreciation rate that gives us more frequent exposure to the irreversibility

constraint in the simulations. All parameters are reported in Table 1.

Complete Markets. Following Kollmann et al. (2011) and Brumm and Scheidegger
(2017), we assume complete markets. This assumption implies that the decentralized
competitive equilibrium allocation can be characterized as the solution to a social plan-
ner’s problem. Subject to aggregate resource constraints, the planner maximizes the
weighted sum of country-specific utilities, where each country’s utility is weighted by

Tj, a welfare weight that depends on its initial capital stock.
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Table 1: Parameterization of IRBC model

Parameter Symbol Value

Discount Factor B 0.99

EIS of country j Y [0.35,1]

Capital share 4 0.36

Depreciation 0 0.005

Std. of log-productivity o 0.01
Autocorrelation of log-productivity p 0.95

Intensity of capital adjustment costs ¢ 0.5

Aggregate productivity A (1-B(1-9))/(CB)
Welfare weight of country j Tj AV

Recursive Equilibrium Conditions. The equilibrium conditions in each period con-

sist of the optimality conditions for investment in each country’s capital,

A1+ ¢g| = BE: {/\’ {a;AC(k})g_l +1-6+ %g;(g; +2)] } ji=1,...,M, (16)

and the aggregate resource constraint, given by

3 02\ v (A
Y | 9jA(k)E +k (1—(5—§gj)—k]-— (-) = 0. (17)

=1 T

These equations jointly determine the capital choice of each country j, k;-, and the La-
grange multiplier on the resource constraint, A. For the derivation of these conditions,
we refer the reader to Brumm and Scheidegger (2017).

3.2 Quasi-Analytic Expectations with TTA

When solving high-dimensional stochastic models, not only function approximation
but also the computation of expectations poses a formidable challenge. In case of the
IRBC model, the M + 1 dimensional integral in equation (16) has to be computed. Pre-
vious papers solve the high-dimensional IRBC model either by resorting to compute-
intense Monte-Carlo integration or monomial rules, which exhibit polynomial growth
in the number of dimensions (see Kollmann et al., 2011). Quadratically growing mono-
mial rules achieve decent accuracy at the expense of becoming too compute intensive

at medium scale already, while monomial rules that grow only linearly lack accuracy.®

8Employing such a monomial rule in both the time iteration and the error evaluation step, Brumm
and Scheidegger (2017) deliberately sidestep the challenge of computing accurate high-dimensional ex-
pectations to focus on high-dimensional function approximation.
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Due to the stark trade-off between speed and accuracy in high-dimensional numerical
integration, an approach that allowed for calculating expectations analytically would
be very welcome. Such an approach would not only be computationally efficient, it
would also achieve greater accuracy by integrating over the entire distribution rather
than relying on a finite number of evaluation points. TTA allows for such an approach,
as we now show.

Integration across the dimensions of a tensor train can be performed analytically,
as detailed in Section 2, by substituting the basis functions of the relevant dimension
with their anti-derivative. However, this property alone does not fully resolve the
expectations problem, since expectations are not simply integrals over policy functions
— as can be seen in equation (16). To address this complication, we proceed in three
steps. First, instead of using the natural recursive state of the economy, capital stocks,

k]-, and productivities, aj, of all countries, we use the following state:
x=(ki,....kp,d1,...,0m,2) € X C RPMTL (18)

where i; = Ina; — 0z is the log-productivity of country j before the impact of the global
shock, z, is taken into account. Second, we define the term inside the expectations

operator in country j’s Euler equation, which we refer to as the expectations term,

ni(x") =A' {a;Ag(k})gl +1-6+ %g;(g; +2)|, (19)

so that expectations can be computed as

Bel(a)} = [ o [ f@lotnao) ... fl@ylpinay, o) - f(210,1)

nj(Ky, .. K ay,. .Gy, 2) d(Z, a8, L dy),

(20)

where f(-|p,¢) denotes the probability density function of a normal distribution with
mean y and standard deviation ¢. In the third step, we perform a change of basis for
the individual productivities @, . . ., @), and the global shock z’. Specifically, we replace
the polynomial basis functions ¢(x) with a precomputed "expectations basis", given
by the integral of the product of the density function and the polynomial basis func-
tions, [ f(x|p,o)¢(x)dx.? This transformation allows us to directly incorporate the

probability distribution into the tensor train structure, streamlining the computation

9While the choice of the expectations basis for z, which is distributed normally with mean zero, is
straightforward, more care is required for the expectations over ﬁ;-. Since In ﬁ; follows an AR(1) process,
it is also normally distributed with mean pIna;, which depends on the current state. In practice, we
compute the expectations basis on a very fine grid for y and interpolate it based on the specific value of
aj. Note that this interpolation is one-dimensional, as it only affects the basis functions, and thus does
not introduce additional complications related to the curse of dimensionality.
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Figure 3: Expectation Formation with Tensor Trains
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The figure shows how the integrals in equation (20) can be streamlined using the tensor train decompo-
sition. The integrals address only isolated dimensions of the tensor train, thus their evaluation can be
done directly at the corresponding core, by replacing the basis.

of expectations. For better intuition, Figure 3 illustrates this process using the graphi-
cal notation introduced in Section 2. Note that this quasi-analytic integration approach
is only possible when integrating over random variables that are (conditionally) inde-
pendent, which is the reason why we choose the state x as specified in equation (18)

above.

3.3 Endogenous Grids in High Dimensions with TTA

There are two standard routes to enforcing the optimality system (16) - (??). Brumm
and Scheidegger (2017) apply a numerical root finder to the equilibrium conditions
and iterate on the policy function (known as time iteration). With TTA, we can take
a more efficient path: a variant of the endogenous grid method of Carroll (2006). In
the IRBC model EGM replaces a joint M + 1-dimensional numerical solve with a one-
dimensional solve. Since this approach produces irregular (endogenous) grids it is
not applicable for grid based methods; TTA, however, is agnostic to the underlying
sample, which makes it the natural companion for EGM.

Applied to the IRBC model, EGM works as follows. Fix a candidate policy #. For
each exogenous state (zt, a¢) fix the choice k; 1, and compute the right-hand side of the
Euler equation (16). With 7 given, the expectation is obtained quasi-analytically, ac-
cording to the previous section. Given a solution candidate for A; we can rearrange the
Euler equation (16) to obtain the endogenous state k; analytically. Plug-in the endoge-
nous state in the aggregate resource constraint (17) and update the solution candidate
At until it solves (17).

The procedure can by easily extended to accommodate the irreversibility constraint

of the non-smooth model.!?

19Details can be found in Appendix B.
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3.4 The TTA Algorithm for Solving IRBC Models

We now present an algorithm that employs TTA to compute a recursive equilibrium
of the IRBC model. The recursive state of the economy x € X consists of the country
specific capital stocks k;, transformed productivities 4;, and the global shock z (see
equation (18)). The policy we solve for consists of the expectation-terms 7; defined in
equation (19):11

p:X = RM p(x) = (m(x),...,71m(x)). (21)

The mapping p determines only M policy components, while the equilibrium system
involves M + 1 unknowns. Hence, given p(x), simulation requires solving for A to
enforce the aggregate resource constraint. '2

A recursive equilibrium consists of a policy function p and an ergodic set £ C X,
such that (i) policies satisfy the equilibrium conditions on the ergodic set and (ii) sim-
ulating the policies generates the ergodic set. Corresponding to conditions (i) and (ii),
the algorithm consists of two levels, with the inner level computing policies that ap-
proximately satisfy optimality conditions (16) and (17) on a set of sample states S using
EGM. The outer level, once the inner level converged, simulates the model to update
the set S to get closer to the ergodic set.!® A detailed description of the algorithm can
be found in Algorithm 2. To measure the accuracy of the solution, we follow the stan-
dard approach of computing unit-free (relative) Euler equation errors for each of the
M countries, as well as an error for the aggregate resource constraint. These measures
reflect how closely the numerical solution satisfies the model’s equilibrium conditions.
For each country j, we use the tensor train representations of the policy function 7;, and
determine the Lagrange multiplier A from the resource constraint to infer the capital
choice k;- from equation (19). The Euler equation error for country j is then defined as:

EE = BE: {nj(x)} - [A(1+¢-g)] ' —1, (22)

where expectations are computed using the same basis transformation employed dur-

ing the model solution. This ensures consistency between the approximation and the

1 The expectations terms are functions of the other policy choices. To employ the quasi-analytical
expectations approach explained above, it is essential to directly approximate these terms via TTA. A
practical advantage is that ; is typically smoother than the underlying choice variables, which makes it
easier to approximate accurately.

12While this may seem unusual, it is central to the efficiency of the approach: we approximate a com-
paratively simple and smooth object (latent low rank), and recover the remaining choice via a clearing
condition.

130f course, this approach is only possible as approximation via TTA can operate on irregular datasets.
In high dimensions it becomes increasingly inefficient to approximate a model on a set of points by sam-
pling from the hypercube enveloping the ergodic set, as the ratios of volumes between ergodic set and
hypercube declines drastically. Moreover, the corners of the hypercube represent extreme circumstances
with zero probability that unnecessarily require substantial non-linearity in the approximation.
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Figure 4: IRBC Model Scaling and Errors
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The left panel reports normalized computation time, normalized by the case of the 11-d smooth model.
The horizontal axis spans model dimensions from 11 to 51, corresponding to 5 to 25 countries. Compu-
tation times are displayed on a base-10 logarithmic scale. The increase in computation time is modest:
raising the dimensionality from 11 to 51 multiplies computation time by two orders of magnitude. The
middle panel displays the average error in base-10 logarithmic units. The average error remains well
below 107> and 10~* in the smooth and the non-smooth model, respectively. The right panel displays
the 99th percentile error, which is around one order of magnitude higher than the average error in both
models. Accuracy remains approximately the same with increasing dimensions.

evaluation of expectations. For the aggregate resource constraint, we define the rela-

tive error as: i
i [oak +k (- 0) - $2)[ -k - (3)
i |aiAK +k (~ 487 |

These error measures are computed along a simulation path of 10,000 periods, using

(23)

a sequence of shocks that is independent from the one used to construct the state set
S in the solution algorithm. This allows us to assess out-of-sample accuracy. A key
advantage of our approach is that the expectations in the Euler equation are computed
quasi-analytically. In contrast, approaches based on numerical quadrature—such as
the monomial integration method used by Brumm and Scheidegger (2017)—introduce
an additional source of approximation error due to the quadrature itself. By contrast,
our method eliminates this source of error entirely, as expectations are evaluated ex-
actly (within the functional basis).

3.5 Accuracy and Scalability of TTA

In this section, we describe the computational scaling properties and the accuracy of
TTA in solving the smooth and non-smooth IRBC model. First, we increase the dimen-
sionality of the model while keeping ranks and bases of the TTA fixed, and analyze
the resulting computation times and errors. In a second step, we vary the ranks and
bases in the non-smooth model while keeping the dimensionality fixed to assess their
impact on accuracy.
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Algorithm 2 Solving the IRBC Model using TTA

Require: Initial sample of states S = {x1,...,xny} C X, initial guess for next period’s
expectations terms " = (171Jr PR 17;(/[) in TTA format, error thresholds e1; and €gjy,

sequence of shocks {z;}I_;, {@;}]_,, initial simulation state x;.

Simulation & EGM
while g > esim do > Simulation Loop
while 11 > er do > EGM LOOp

fork=1,...,Ndo
At x; € S, solve equations (16) and (17) for A(%;), k1, ..., ky using EGM.
Fix the choice (K} (%), ..., Ky (%)) = (k1, ..., km) C x4
Given 577, compute expectations over 11 quasi analytically using (20).
Obtain the endogenous state %, = (k, dx, z;) by rearranging equation (16).
Compute policies 17 (Xx) = (11 (%x), ..., M (%)) via (19).
end for
Update 77; := T (m, 7, {xg, 7j(x) }£;), for j = 1,..., M using Algorithm 1.
Set é11 = || — n7|| and update T := 7.
end while
SetS = {#,...,%in} = S.
fort=1,...,Tdo > Update Simulation Path
Evaluate 7 at xy, infer k/, A using equations (19, 17), set x;1 := (K, 4441, 2).
end for
Compute &sim = ||S = S|| = § L [% — xil.
end while
Draw new shocks {z;}L; and {a;}];.
fort=1,...,Tdo > Compute Euler Errors
Evaluate 7 at x4, and infer k/, A using equations (19, 17). Set x;11 := (k/, d;11, 2).
Compute Euler Errors using (22) and (23).

end for
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Scaling Exercise. In our first exercise, we scale the number of countries M = 1,...,25
in the (non-)smooth IRBC model, which implies dimensions d = 2M + 1, ranging
from 11 to 51. We fix bases and ranks, m = 3 and r = 3, in the smooth model, for
all dimensions; in the non-smooth specification we choose m = 5 and r = 3. The
sample size N = |S| is chosen such that the ratio of sample points to tensor train
parameters remains at 50, resulting in a sample size of 50mr?d. Figure 4 reports the
normalized computation time — defined as the computation time of each model in-
stance divided by that of the smooth five country model — and the (unit-free) error
measure in percent for both models.The results show that computation time increases
modestly and clearly sub-exponentially in the dimensionality of the problem.!* The
normalized scaling in Figure 4 clearly outperforms the adaptive sparse grids used by
Brumm and Scheidegger (2017). The normalized computation time going from d = 11
to d = 51 increases modestly by a factor of 100. Computing the non-smooth model
is not fundamentally more difficult than the smooth model, when accounting for the
richer basis used to solve the non-smooth model. The average Euler error remains
well below 0.001% (0.01%) in the smooth (non-smooth) model. In each case, the 99th-
percentile error is approximately one order of magnitude higher than the average. In
the non-smooth model the irreversibility constraint actually matters — the uncondi-
tional probability that a countries constraint is binding lies between 2 and 3 percent.
The average error in the smooth model is roughly two orders of magnitude better than
the simulation error reported in the scaling exercise of Brumm and Scheidegger (2017)
in Figure 8, despite being orders of magnitude faster to compute.

The Role of Ranks and Bases. In the second exercise, we fix the dimension atd = 7
and study how approximation quality in the non-smooth model depends on the TTA
rank and basis order. We increase the basis order m and rank r jointly while keeping
the sample-to-parameter ratio fixed at 50. Moving fromm = 3,7 =3tom =5,r =5
lowers the average error from —4.85 to —5.02 and improves the 99th-percentile error
from —4.19 to —4.30. Further refining ranks and basis yields diminishing returns: at
m = 9, r = 9 the average error reaches —5.09 and the 99th-percentile error —4.37.
Overall, the relatively small incremental gains at higher m and r suggest that even
low ranks and low-order bases already capture the key features of the solution in this
setting.

1‘IScaling is, however, more than linear. This is due to several contributing factors. First, to maintain a
constant sample-to-parameter ratio, the sample size grows linearly in d. Second, the cost of evaluating
the TTA at a given point in the state space grows linearly in d, at a rate of O(mr?d). Together, this im-
plies that the computational cost of a time iteration step (assuming a fixed number of Newton iterations)
grows quadratically in d. Third, for each additional country, an additional policy function has to be ap-
proximated, while the approximation itself becomes more complicated due to the additional dimension
and the larger sample size.
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4 TTA for Heterogeneous Agents in Continuous Time

This section develops a tensor-train approach for solving heterogeneous agent models
in continuous time. Section 4.1 presents the model and states the master equation char-
acterizing equilibrium. Section 4.2 introduces an a posteriori model-reduction strategy
for generating a discrete representation of the wealth distribution. Section 4.3 lever-
ages that representation and the tensor train approach presented in Section 2 to build
an algorithm for solving the master equation. Section 4.4 provides remaining algo-
rithmic choices independent of the TTA approach. Section 4.5 defines an appropriate
error metric and evaluates the method’s performance, thereby demonstrating that the
non-linearities induced by the stochastic wealth tax require a multi-dimensional rep-

resentation of the wealth distribution to achieve accurate solutions.

4.1 Krusell-Smith Model with Stochastic Wealth Taxation

Households. The economy is populated by a continuum of infinitely lived hetero-
geneous households differing in idiosyncratic labor productivity &; € €1, 5, discount
rate p; € p1, p2 and endogenous asset holdings a;. The idiosyncratic productivity state
switches from j to the other state ; with Poisson rate A; > 0, the idiosyncratic discount-
ing state switches from i to 1 with Poisson rate w;. Each household solves

1—y
¢ - 1

]Eo/ e Pu(cy)dt, with u(c) =
0 11—

/ (24)

subject to
A = Wiep + 14 — €, A > 4, (25)

with a borrowing limit g > 0.

Production. A representative firm operates a Cobb-Douglas technology with aggre-
gate capital K; and inelastically supplied labor N; = 1, so that output, the wage, and

the interest rate are given by:
Y; = exp(z0)K¥, wi = (1—a)exp(z)K, 7 =aexp(z)Kit —o.
The (log) total factor productivity z; follows an Ornstein-Uhlenbeck process in levels

dz; = x(z — z;)dt + 0,dBy, (26)
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with mean reversion x > 0, long-run mean z, and diffusion ¢,. Aggregate capital

equals the first moment of the cross-sectional wealth distribution,

o 2 2
K; = /a a Z Zgij(a,t)da, (27)

i=1j=1

where g;;(a,t) denotes the density of agent with assets 4, productivity type j, and dis-

counting type i.

Wealth Tax. With Poisson intensity 6, a stochastic wealth-tax is levied. At such an
event, the government collects a fraction T € [0,1) of each agent’s assets and dis-
tributes the proceeds equally across agents, yielding post-tax asset holdings 4 from
pre-tax asset holdings a satisfying:

i=(1—1)a+ 1K} (28)
HJB Equation. The value function for type ij, V'/(a, t), satisfies the HJB equation:
0;Vi(a,t) = max {u(c) + 09,V [wiej +ra —c] 4 Aj [Vif — Vi]}
+w [V’f . Vif] O E Vi }}
The first-order condition implies
cij(a,t) = 1 (aavif(a, t)) , sij(a,t) = wiej +ra —cij(a, t), (29)

where s;;(a, t) denotes the optimal savings function (drift of assets) for type ij.

Kolmogorov Forward Equation. Given optimal savings s;;(a,t), the law of motion

for the density function of type ij is given by the Kolmogorov forward equation (KFE):

atgij(a, t) = — 8,1 [Si]'(ll, t)gij(a, t)] — )\]'gi]'(ﬂ, t) + /\]gi](a, f) — wigij(a, t) + (Uzgl]'(ll, t)
1 a— TKt
+119 |:1_Tgl]( 1—T /t)_gl](a/t):|/

i.e., transport by savings, switching between idiosyncratic states, and a jump (push-

forward) operator for the tax (where 1y indicates a tax event).!®> The borrowing con-

15The jump term consists of an outflow — gj(a,t), and an inflow from the pre-image of the post-tax
mapping. The additional term ﬁ comes from a mass conservation consideration.
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straint induces a reflecting boundary at a = a (zero outward flux). For compactness,
we write 0;g = (A*g).

Distributional Approximation. To make the infinite-dimensional state tractable, we
summarize the wealth distribution by M moments T'; = (m}, ..., mM) with

m’;:/o szz] )gij(a,)da k=1,..., M, (30)

i=1j=1

for a chosen set of functions For example, taking f; ( )=ua,fori=12andj=1,2
yields the capital stock.

Recursive Equilibrium. Turning from sequential to recursive characterization of the
model, policy and value functions now depend on the distribution over endogenous
assets and exogenous (productivity and discounting) types — or a finite dimensional
representation of it, as just introduced. More precisely, a recursive competitive equi-
librium consists of functions {Vif, gij ,cll, st Ha,z,T)fori =1,2,j=1,2 and aggregates
{r,w,Y,K,C}(z,T) such that (i) households optimize given rational expectations, (ii)
factor prices are competitive, (iii) aggregates are consistent with distributions, and (iv)
the asset distribution evolves according to the Kolmogorov forward equation given

policies.

Master Equation. The recursive-equilibrium value function satisfies the following
master equation, which can be derived by combining the HJB and Kolmogorov for-

ward equation:
0iVi(a,zT) = max {u(c) + 9,V [w(z,T)ej+r(z,T)a— c]}
+ A (VI = V) 4w, (V’J’ - fo>
+x(z—2) 8, VI + 1029, V"

+ur(T) - ViV + 9(V”(a,z,f) — Vii(a,z,T)),

where yr(T) is the drift of the chosen moment vector induced by the KFE and I" denotes
the post-tax moments implied by 4. At the borrowing limit a = g, the drift of assets

must be non-negative implying the following boundary condition

0, Vi(a,-) > u' (w(z,T)ej+1(z,T)a). (31)
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Table 2: Calibration of the Continuous-Time Heterogeneous-Agent Economy.

Parameter Symbol Value
Discount rate [01,02]  [0.0,0.09]
Risk aversion 0% 2.0

Capital share « 0.36
Depreciation 0 0.02
Borrowing limit a 0.0

Labor productivity €, €] [0.15, 1.096]
Productivity switching rates [A1,A2] 0.4, 0.045]
Share of high discounting households d 0.5
Discounting redraw q 0.05
Discounting switching rates (w1, wr]  [(1—d)g,dq]
TFP long-run mean z 0.0

TFP diffusion (OU) o 0.007

OU mean reversion K 0.05

Calibration. We follow Krusell and Smith (1998) for the idiosyncratic labor-productivity
process, aggregate production technology, and risk aversion. In addition, we introduce
two discount-factor types, which increases mass at the borrowing constraint and in the
upper tail of the wealth distribution. The discount factors p; and p; are set to the val-
ues in Auclert et al. (2025). We assume on average half of households has patience p;
or py, respectively, and with a probability of 5% per quarter patience is redrawn. The
continuous TFP process is calibrated to the empirical estimates in Christensen et al.

(2024). Parameter values are reported in Table 2.

4.2 A Posteriori Model Reduction for Distributional Dynamics
We now propose a novel, yet straightforward, simulation-based method to identify

moments for a low-dimensional representation of the wealth distribution.

Dynamic Mode Decomposition. Let ¢(t) € RN be a finite-dimensional representa-
tion of the wealth distribution (e.g., histogram bins). To compute informative moments
of the distribution, we assume its evolution is approximately linear, with forward op-

erator A and an error term &(t)

¢(t) = Ag(t)+e(t), AeRVN ¢(t) eRN.
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We observe g(t) at equally spaced times fy, ..., tr with step Af, and collect snapshot

matrices!®

X_ = [g(t), ..., g(tr-1)] e RN*(T-1), X4+ = [g(t2),...,g(tr)] e RNx(T-1)

Dynamic Mode Decomposition (DMD) seeks the best linear propagator A; (in least
squares) such that X, ~ A;X_. When N is large, we compute a rank-k truncated
singular value decomposition (SVD) of X_,

X_ ~ USV', UeRV*¥ xR yeRT-Uxk

where ¥ = diag(cy, . ..,0x) collects the k largest singular values. The columns of U
span the dominant directions of variation in the data, and the rows of V' capture their
time paths. Projecting onto U yields compact “moment” coordinates

m(t) = U'g(t) €RY,  m(tip1) ~ Am(t),
with reduced dynamics estimated by
A=U"X, vl e Rk

These moments m(t) are the variables we carry into the global solution algorithm to
represent the distribution parsimoniously.!” As a heuristic for choosing how many

moments to retain, we use the energy share of each singular value,

o2

Ei=—
o2’
Lj0;

(32)

which quantifies the fraction of variance explained by the i-th singular value.
Connection to Koopman Theory. When the distribution follows nonlinear dynamics

g(t+ At) = f(g(t)), the Koopman operator K advances observables  linearly:

%w(g(t)) = Key(g(t)

16We obtain g(t) by simulating an approximate model solution (e.g., through histogram evolution).

17We make two practical adjustments to the otherwise canonical model reduction approach. First,
since the distributional dynamics also depend on productivity z;, we also include it into the forecasting
rule. Second, due to its importance for factor prices, we use capital as the first moment. To ensure that
higher order moments are orthogonal to capital, the matrix X_ is projected onto the subspace orthogonal
to the capital weight vector before performing the SVD.
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Thus, even if f is nonlinear in state space, evolution is linear in the (typically infinite-
dimensional) space of observables. DMD can be viewed as a finite-dimensional ap-
proximation to K restricted to linear observables ¥(g) = g. Extended DMD (EDMD)
enlarges the observable set to a dictionary

$(g) = [#1(2)--- pm(g)]

(e.g., polynomials or radial basis functions) and fits a linear operator K from

Yo = [p(t)), - w(gltra))], ¥y = [9(g(t)), - 9(8(tr))]

via the relation ¥, ~ K'¥_. With a sufficiently rich dictionary, EDMD captures non-
linear distribution dynamics through a linear evolution in feature space, while still

delivering a low-dimensional set of learned moments for the global solution.

4.3 Solving the Master Equation with Tensor Trains

We solve the master equation using value function iteration (VFI). In each VFI step,
we recover optimal consumption ¢* from the first-order condition, taking the current
candidate value function V as given. Conditional on c*, we update V by approximately
solving the master equation with a spectral least squares method.!® The solver operates
directly on tensor-train (TT) coefficients, which allows the high-dimensional update to
be carried out efficiently (see Section 2).

A generic master-equation problem has two components: (i) an interior equation
that must hold on the state space, and (ii) boundary conditions. We compute an ap-
proximate solution by casting the problem as constrained least squares, in the spirit
of Section 2. Specifically, we (a) minimize the squared residual of the interior equa-
tion evaluated at a set of interior points, and (b) enforce the boundary conditions at a
separate set of boundary points.

The boundary conditions typically take the form of inequality constraints. For
computational convenience, we convert each inequality constraint into an equality
constraint by introducing a nonnegative slack variable at each boundary point. We
then solve the resulting equality-constrained problem using an augmented Lagrangian
approach, which incorporates the constraints into the objective via multipliers and
quadratic penalties. Given this structure, the augmented-Lagrangian subproblems ad-
mit closed-form updates for both the value-function coefficients and the slack vari-
ables. We obtain a solution by iterating over updates of (i) the value-function coeftfi-
cients, (ii) the slack variables, and (iii) the Lagrange multipliers — that is, by applying

8By "spectral least squares" we mean a global (typically polynomial) basis representation, with the
differential equations enforced in a least-squares sense.
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the alternating direction method of multipliers (ADMM). One run of ADMM corre-
sponds to a single VFI update.

Updating the value-function coefficients amounts to a quadratic minimization prob-
lem. In TT form, this step can be solved efficiently using alternating least squares
(ALS), which preserves the low-rank structure throughout.

This section proceeds in four steps. First, we introduce a generic master-equation
problem and its constrained least-squares formulation. Second, we derive the corre-
sponding augmented-Lagrangian representation. Third, we map our application from
the previous section into this general framework. For clarity, we present the full-tensor
formulation in the main text; the local subproblems underlying the TT implementa-
tion (TTA) are deferred to the appendix. Finally, we describe the ADMM iterations
that implement one VFI update.

Generic Master Equation. Let D be the state domain with interior int(D) and bound-
ary 0D. Consider master equations that act linearly on V in the interior and on the
boundary. Write M for the interior operator and C for the boundary operator. We seek
a TT approximation V (-, 7') with cores T = {W?!,..., W¥} satisfying

MIV(;T)](x) =u(x), Vxeint(D), C[V(;T)](x)>h(x), VxeaD.

Global Minimization Problem. Given interior samples {x;}}¥ , and boundary sam-
ples {x g}é\/{: 1, we minimize interior residuals with regularization for numerical stability

and impose boundary inequalities

N d
min Y IMV T () — ulals + ) [IWlIE
1 Wa i j=1

st. CIV(;T)|(%r) > h(%y), (=1,...,M.

Augmented Lagrangian Problem. To cast the constraint minimization above into,
an unconstrained convex problem we proceed in two steps: First, we introduce slack

variables t; > 0 at boundary samples {%,;}M .. Second, we incorporate the constraints
¢ y p (S 0=1 p

26



into the objective via multipliers and quadratic penalties — an approach known as
augmented Lagrangian:

N d
L(T t,p) = ; MV (5T () = u(x) I3 +7 3 Wil I

j=1

v M
+ 5 1 CIVE T = h(x) — )’
/=1
M
+ Y we (CIV TR = h(%e) —te), >0
/=1

Full Tensor Problem. Given multipliers # and slack variables t write the minimiza-
tion problem over 7, as problem over the full tensor of value function coefficients
v =vec(A) € REwithK = H?:l mj as!?

mvin%HMv—quJr%||Cv—h—t||§+yT(Cv—h—t). (33)

This problem falls into the class of quadratic minimization problems that can be solved
efficiently using ALS. In Appendix C we show how to solve the minimization problem
in TTA form, for ease of exposition we stick with the full tensor problem here. The
component matrices M, C and the vectors u, h take the following form in the applica-
tion outlined above:

1 . y
Mi]' = (pz + K + )\]' + Wi + 9) XV’Z] — (w(Z,T)S]' + T’(Z, F)a — Cij) Xa“’lj
— k(2 — z) X% — zagxa%»f — u(T) X — A XV — w0, XV — gX ',

3 1 .. 3
ui]' _ u(CI]) + KVI],old’ Cz’j — Xaaﬂ]’ hij — u/(w(zll")ej + I’(Z, F)g).

where X717 is the full matrix of basis entries of the value function, or its derivatives.2’
ADMM. We obtain a solution of the minimization problem by iterating over updates

of the value-function coefficients, the slack variables and the multipliers, of the aug-

mented Lagrangian — this approach is known as alternating directions method of

BWith M € RN*K 1y ¢ RN, C € RM*K |, ¢ RM, ue RM t ¢ RM. In practice we also add a small
regularization term to each core WX for numerical stability.

{0 (1) - i (RN
20For example X"/ = : € RV*K,

{n, (x) o i, RO
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multipliers (ADMM). One iteration consists of minimizing the augmented Lagrangian

with respect to v (in TT format)
1
T = argmin || Mo — u|}3 + %Hcp— h— "2+ u"T (Co—h— ),

which admits a closed form least squares solution. Followed by updating the slack

variables, by minimizing the augmented Lagrangian with respect to ¢,
n
"1 = max {C[V(-;T"H)](f) —h(X) + %,0} / (34)

also with a closed form solution. Lastly, in the dual ascent step we update the multi-
plier, as is standard in ADMM

W=y (CIV T ](R) = h(x) — ). (35)

Once the ADMM algorithm converged, the value function iteration step is complete.
We adapt the penalty 7y to balance primal and dual progress.?! After completing the
VFI step, previous slacks, multipliers and penalties can be used to warm start subse-

quent iterations.

4.4 Solution Algorithm

The solution algorithm consists of three nested routines. At the outermost level, we
construct a training set: a collection of histogram snapshots of the cross-sectional dis-
tribution paired with realizations of the exogenous shocks. At the same level, we define
a set of moments, represented as weight vectors that map a histogram snapshot into a
scalar statistic. Given a training set and a choice of moments, solving the household
problem requires a forecasting rule for the evolution of the aggregate state (the mo-
ments). These forecasting rules are determined at the second level. At the innermost
level, given moments and forecasting rules, we solve the household problem by value
function iteration (VFI). This step is taken as given since it was described in the pre-
vious section. A graphical overview of these three nested procedures is provided in
Figure 5.

Training Set and Moments. We construct the training set from simulated data ob-
tained by simulating forward the distribution under the exogenous shocks and a can-
didate solution for the household value function.?> From the simulated sample we

2IWe choose 7y such that ||rpyi| |2 and |[rgyal||2 are of comparable magnitude.
22To obtain an initial simulation set, we first solve the household problem under an ad hoc forecasting
rule and simulate the model under this rough approximation.
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Figure 5: Solution Algorithm for Heterogeneous Agent Model
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The algorithm has three nested loops. The outer loop builds a training set of histogram snapshots of the
cross-sectional distribution paired with exogenous shock realizations, and specifies a set of moments as
weight vectors that map each histogram to scalar statistics. Given a training set and chosen moments,
the middle loop estimates forecasting rules for the evolution of the aggregate state (the moments). In
the inner loop, taking these moments and forecasting rules as given, the household problem is solved
via value function iteration with TTA.

select moments using the a posteriori model reduction procedure described above. We
then draw training points by randomly sampling tuples consisting of (i) the exoge-
nous shocks, (ii) histogram snapshots, and (iii) time derivatives of histogram snap-
shots. Given the moment definitions, we compute the implied moments at each train-

ing point.

Forecasting Rules. To solve the household problem, agents require beliefs about the
evolution of the distribution. We represent these beliefs in terms of the implied evolu-
tion of the moments. Since the training data include time derivatives of the histogram
snapshots, we can compute time derivatives of moments directly. We estimate an ap-
proximate law of motion by regressing the time derivatives of moments on current mo-
ments and exogenous states. In addition, households must forecast how an arrival of
the wealth-tax shock reshapes the distribution in moment space. We therefore estimate
a separate mapping from current moments (and exogenous states) into post-shock mo-

ments.

Overall Algorithm. Given these components, the algorithm proceeds as follows. On
the innermost level, we solve the household problem using VFI and ADMM. After
the value function has converged, we update the forecasting rules implied by the new
household solution. Once the value function and forecasting rules are jointly consis-
tent, we simulate the model forward. Based on the resulting simulated sample, we

(re-)select moments via a posteriori model reduction and update the training set. We
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iterate until the training set, the selected moments, the forecasting rules, and the house-
hold value function are mutually consistent on the implied ergodic set. Algorithm 4 in

Appendix C summarizes the full procedure.

4.5 Measuring Accuracy when Aggregate Risk Matters

In this section, we show that the Krusell-Smith model with large wealth-tax shocks
requires a genuinely multidimensional representation of the wealth distribution, and
that the tensor-train approximation (TTA) enables us to solve the resulting high-dimensional
PDE accurately. We begin by introducing our error metric, and then demonstrate that
this metric improves markedly as we enrich the state representation with additional

moments.

Error Measure. We evaluate accuracy via a relative HJB error in consumption units.
Given a candidate value function V/(+; T'), obtain the optimal consumption from the

FOC,
cfj(a,Z,F) = (u)™! (E)aVl](a,z, I T)> :

Compute the implied consumption (4, z,I') from the master equation

ci(a,z,T) =u! (inij (,2,T;T) = 8.V (a,2,T;T) [w(z, T)ej + r(z,T)a — ]
—Aj(Va,z,T;T) =V (a,zT;T))
— w; (Vlj(a, z,T;T)—Vi(a,zT; T)>
—x(z2—2)0,V¥(a,z,T;T) — %(722 0.V (a,z,T;T)
—ur(T)-VVi(a,z,T;T) - B(Vij(ﬁ, z,T;7) = Vi(a,zT; T))

At the borrowing constraint, we also record the boundary violation in relative con-

sumption units,

0, a
max{cmin (z,T)—(u')1 (aa Vi (E,Z,F}T)/O}
Cmin (Z/r) !

V
1S}

Ep(a,z,T) =

a =

S

Our pointwise error metric is then

é(a,z,T)

el g
c*(a,z,T)

51']-(11, z,T) = max {

,5B(a,z,r)}.

We simulate a path of aggregate distributions {g(¢)}!_; by drawing shocks and evolv-

ing the Kolmogorov forward equation on a fine wealth grid using the policies implied
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by Vi(-;T). At each t, we draw 100 individuals from the joint distribution over (i, )
and assets a ~ gij(t), evaluate Si]-(a, z,T) at those draws, and summarize the resulting

error distribution over time.

Accuracy Results. To demonstrate that TTA can accurately solve multidimensional
heterogeneous agent models, we solve the economy under three tax regimes: 0% (no
tax), 10%, and 20% wealth tax, each arriving with quarterly probability of 2.5%. For
each regime we vary the number of aggregate moments, M, used to summarize the
cross-section. We approximate the value function (for each discrete idiosyncratic state)
with TTA over the continuous state vector (a,z,k, my, ..., mp) 23 For assets, 4, we use a
basis of order 30, for each additional dimension we use a basis of order 3, while setting
all TT ranks equal to 3.

Figure 6 reports statistics from solving the model under different tax regimes and
with a varying number of aggregate moments. On the left-hand side of that figure,
we report the energy shares E; of the singular values from the model-reduction step.
Without a wealth tax, E; declines steeply, indicating that higher moments add little to
the aggregate dynamics. With a 10% or 20% wealth tax, the decay is notably flatter:
higher moments contribute meaningfully and are therefore required to capture the dy-
namics. The drop from 0% to 10% is much larger than from 10% to 20% — even a 10%
tax, occurring on average every ten years, already reshapes the wealth distribution and
raises the model’s effective dimensionality, while the incremental effect of a larger tax
is comparatively smaller.

On the right-hand side of Figure 6 we plot the mean error and the 95th-percentile
error (both on log-10 scale) against the number of moments used to summarize the
distribution. For both positive tax levels and both error metrics, accuracy improves
roughly by an order of magnitude as additional moments are included. In the 10%
case, gains taper after the fifth moment, whereas the 20% case continues to benefit
from additional moments — consistent with the flatter energy profile under the higher
tax. At a low number of moments, the 10%-tax economy is more accurate than the

20%-tax economy, but the gap narrows as the number of moments grows.?*

ZCapital is fixed as the first moment because it directly pins down factor prices; the remaining mo-
ments are selected by a posteriori model reduction. To avoid redundancy once capital is fixed as the
first moment, we orthogonalize the remaining moment time series with respect to the first moment
(i.e., remove the first-moment component). All results use 10,000 sample points and the linear DMD
specification described in the previous section.

24In the tax-free economy errors are substantially lower (-3.9 for the mean error and -3.5 at the 95th
percentile), as the tax introduces discrete jumps and more distributional movement, while the TFP pro-
cess alone generates relatively little variation.
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Figure 6: Heterogeneous Agent Model — Energy Shares and Errors.
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The left panel shows the energy shares E; of the i-th singular value (index reported on the horizontal
axis) from the model-reduction step under wealth-tax rates of 0%, 10%, and 20%. Taxation flattens
the singular-value decay, indicating a higher effective dimensionality than in the no-tax economy. The
right panel plots the mean and 95th-percentile master equation errors against the number of aggregate
moments employed in the solution — adding moments yields substantial accuracy gains.

5 Conclusion

We develop a novel method for computing equilibria in dynamic economic models
using the tensor train decomposition. By exploiting latent low-rank structures in policy
or value functions, the approach delivers accurate approximations while remaining
computationally tractable in high-dimensional state spaces.

We first validate performance in a smooth and non-smooth international real busi-
ness cycle model, assessing approximation quality and computational scaling across
dimensions. The results show that accuracy can be preserved even as the number of
state variables increases, with runtimes rising only moderately. Beyond scalability, the
TT representation facilitates fast and reliable expectation computation, supports flex-
ible training-sets targeted to the ergodic set, and makes it possible to implement the
endogenous grid method in high dimensions.

We then extend the framework to heterogeneous-agent settings, solved in con-
tinuous time via a spectral least-squares tensor-train approach. In a Krusell-Smith
economy with a stochastic wealth tax, we demonstrate that TTA can solve the high-
dimensional master equation accurately and, crucially, that capturing multiple distri-
butional moments is necessary to achieve accurate solutions.

Overall, tensor-based methods provide a scalable and reliable solution strategy for
high-dimensional economic models. TTA offers a flexible toolkit for future applications

in quantitative macroeconomics and beyond.
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APPENDIX

A Generic ALS Template

The TTA algorithm introduced in Section 2 is applicable to a wide range of quadratic
problems that can be minimized efficiently using ALS. Let A € R"1**"d be the full
tensor u = vec(A) € RM with M = szl my. We consider functionals with constant
global Hessian

() = 3]|Su = bl + (Bu—c,e), (36)

where S € RV*M p € RN,B € REK*M, ¢ € RX and e € RX. This class of prob-
lems covers the least-squares approximation problem (Algorithm 1), the augmented-
Lagrangian objective in Section 4, and others; see Holtz et al. (2012). If a problem can be
posed as (36) and all but one TT cores are frozen, each ALS update reduces to solving

a small linear system, which makes this class particularly attractive for TTA.

Local Normal Equations. Let WX € R"1%"X"k be the k-th core and v = vec(Wk) ¢
R"-1""k With all other cores frozen, the vectorized tensor can be written as

u = P,

where P, € RM*"1"k is the linear retraction operator that maps the local core into

the global tensor. Then the local minimization min, J (Pxv) has the normal equations
SA]—(rs\kU = g;—b - BkTe, gk = Spk, Bk = Bpk (37)
These are small linear systems of size ry_1myry.

Efficient Implementation via Environments. Algorithm 1 introduced left / right
stacks. They provide an efficient implementation of the reduced objects S; and By,
so neither P, nor S is ever formed explicitly.
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Least-Squares Special Case. For the dataset {x",y"}\_, with basis {4)11()}:1’: , in
each dimension j, the full-tensor least-squares problems corresponds to B = 0,c =
0,e =0, and®

; | 1 mi,...,mMy
{szl (Pl]' (x] ) }il—l,-n/id—l yl
d oMy ’

Let £F € RN*"-1 and RF € RN*"t denote the left/right stacks defined recursively
from the cores and basis evaluations for all points in the dataset. Then S; admits the

compact factorization

S\k = ﬁk - P(Xi ) ni, - Rk S ]Rerkflmkrk, (39)
P LX) miy

nfk_1 1]

without ever building S or Py. It is this structure that mitigates the curse of dimen-
sionality in the ALS update steps. Algorithm 3 provides a generic formulation of ALS.

B Details Non-Smooth IRBC Model

This appendix details the non-smooth variant of the IRBC model introduced in Section

3. In contrast to the smooth benchmark, investment is irreversible:
Ki—(1-0k>0, j=1,...,M (40)

The aggregate resource constraint (17) is unchanged. The Euler condition for capital
now carries the KKT multiplier y; associated with (40):

AL+ )=y = B { N [1A0)T 1= 0+ S+ 2)| - - o] @
The multiplier satisfies the complementarity conditions
0<u; L (k;-—k]'(l—&)) > 0. (42)

For later shorthand, define the country-specific expectation kernel

ni(x") =A' a}Ag(k})gfl +1-6+ gg;(g; +2)| = (1=o)u. (43)

ZWe have excluded the regularization term, which is only for numerical stability at the local cores.
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Algorithm 3 Generic ALS Algorithm

Require: Basis dimensions m = (my,...,my); ranks v = (rg,...,r;) withrg =r; = 1;
initial right-orthonormal cores W1, ..., W9 with Wk € R%-1xmex7s; operator J of the
form (36) with S € RN*M p ¢ RN, B € RK*M and ¢ € RK, e € RKX.

Generic Alternating Least Squares
Set ¢ = co and € = co.
while € > € do > Macro-Iterations (sweeps)

fork=1,...,d —1do > First Half-Sweep
Solve v* := argmin, J (P;v) via (37) using Sy and By.
Compute [Q, R] = qrd(unfy (res(v¥))).
Set WK := res(Q), WK1 := res (unfg (WF*1) -RT).
Update left stack £5+! using equation (7).

end for

fork=4d,...,2do > Second Half-Sweep
Solve v* := arg min, J (Pyv) via (37) using S and By.
Compute [Q, R] = qrd(unfg(res(v¥))).
Set W* := res(Q), WK~1 :=res (unf, (WK=1) - RT).
Update right stack R*~! using equation (7).

end for

Compute objective ¢ := J(W1,..., W¥)

Sete:=|¢ —¢|and & := .

end while

Return Tensor train approximation 7 = A (m,r, {x",y"}N ) = (W}, ..., Wd).
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The map 7; is piecewise smooth and exhibits kinks along the locus where (42) switches

between slack and binding.

Endogenous Grid Method. As in Section 3, we reduce the (M + 1)-dimensional non-
linear system to a single scalar equation by exploiting EGM. The irreversibility con-
straint is handled by a simple case distinction. For each country j, fix next-period
capital k;. exogenously. Compute the expectations on the right-hand side of (41) via
quasi-analytical integration e; = E{7;(x")}. First, compute the interior solution can-
didate. Set y; = 0 and solve (41) for the implied current capital k;. Then, check con-
sistency between the assumed Lagrange multiplier and the implied current capital. If
k;- > (1— 6)k;j, accept the interior solution (kj, y1; = 0). Otherwise, the constraint binds.
Set k; = kKi/(L=20), uj = A1+ ¢g;(kj, k)] — Bej = 0, which follows by rearranging
(41). Given the set {k; }]Ai , implied by the fixed {k;-}, substitute into the aggregate bud-
get constraint (17) and solve the resulting scalar equation for the multiplier A. This
completes one EGM update. The method retains all advantages of Section 3 while
accommodating the kink induced by (40).

Error Measure. We follow Section 3 and report unit-free Euler errors. With irre-
versibility, we additionally penalize violations of of (40). Define the percentage short-
fall from the lower bound ,

Ic=1- 19(1—]—5) (44)
Let EE/ denote the standard (unit-free) Euler error as in Section 3, accounting for the
amendments in (41), evaluated at points where the constraint is slack. We summarize

the accuracy in the Euler equation for country j by
max { EE/, IC/, min { ~EF/, —I1C/} |

By construction the error is non-negative, it coincides with |EE/| when the constraint
is non-binding, and reduces to the (percentage) irreversibility violation when it binds.

See Brumm and Scheidegger (2017) for a more detailed discussion.

C Details Heterogeneous Agent Model

This appendix expands parts of the main text that were kept brief for space.
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C.1 Local Augmented Lagrangian Problem

To apply Algorithm 3 efficiently to the augmented Lagrangian while working in TT
format, we must never assemble the global functional 7 on the full tensor A nor form
the retraction operator P;. Section 2 showed how left/right contraction stacks — L
and R — yield a reduced linear system that acts directly on the k-the core W¥. For
the master equation in Section 4 we follow the same strategy, but we build separate
stacks for each instance of the value function V, VX, Vaﬂ, Vo Vazz, Vo, From these
we assemble the local projections My (interior operator) and Cy (boundary operator) at
core k.

Prerequisites and Notation. Index coordinates by d € {a,z,m;y,..., mp}, with poly-
nomial basis size my along coordinates k. Let S be the sample set, |S| = N. Precompute
evaluation matrices

Xklj/ij c ]RNxmk’ Oc {V, aa’ az; az2ar,taX}, 1,] S {1/2}/

where XkD’ij stores basis values and Xka Wil X,? = Xka 2 store the corresponding differ-
ential operators applied in the basis. The matrix thax’ij evaluates basis functions at
post-tax variables (, f). Represent V in TT form with cores W1, ..., W% and TT ranks
1 (with rg = r; = 1). For each label [] define local left/right stacks by contracting all
cores except WK against the appropriate X’ E T for £ * k

E]L:I/ij c ]RNXTk,ll RII(],ij c RrkXN‘

Form the local basis tensor by inserting the k-th dimension

B,I,l:\oep — ((EIE\,ij>no . (XkD,ij)ng . <RkD,l]> ) E ]Rerk,lxmerk_ (45)
PR/ notp

Finally, stack indices (o, /, p) into columns to obtain the local design matrices
B9 S ]RNXKk, Ky := rp_ymyry,
and identify the optimization variable with the vectorized core vy := vec(WK) € R¥x.

Local Augmented Lagrangian. Given interior and boundary projections My € RN*®«
and C; € RM*Xx the localized subproblem at core k reads

o1
H}iﬂiHMkvk —ul|3+ %”Ckvk —h—t|F+u" (Chop—h—t), (46)
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where u € RY is the (value-independent) interior right-hand side, 1 € RM is the
boundary target, t € RM are non-negativity slacks, u € RM are the current multipliers,

and 7y > 0 is the penalty.

Interior Operator. The interior projection is the full operator M with the global basis
X replaced by the local basis B.

M) = (pi tx T Aj+wi+ 9) B"Y — (w(z,T)e; +r(z,T)a — ¢;;) B*
_ K(Z _ Z)Baz,ij _ %0-223322,ij _ ‘u(r)Bar,ij . )L]'Bv’i] . wiBV,lj . GBtaX’ij.
Boundary Operator. For the no-borrowing boundary condition we have
C,ij — —B%, and h as in the global problem.

Reduced Normal Equations. Consistent with the general formulation in Appendix
A define the stacked system

R M .
S = K Bi=C, iy =
VCrk

To solve the minimization problem apply Algorithm 3.

[ﬁ(h +t+y/7)] '

C.2 Heterogeneous Agent Solution Algorithm

Algorithm 4 provides a detailed description of the solution method described in Sec-

tion 4.
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Algorithm 4 Solving the Master Equation using TTA

Require: Asset grid 4 € R”; initial distributions G = {g;}}Y, C R*", where each g; stacks the
four idiosyncratic-state histogram over 4; moment generators {f;}M,, with fy € R*". For
each i, define the moment vector m; € RM by [m;]x = (g, fi). Let S = {m;}N | € RM; mo-
ment law of motion u(T) : (z,m) — 1, mapping today’s (z,m) to drifts; tax-event moment
forecast A(I') : m +— 111, mapping pre-shock into after-shock moments; state sample X =
{xi}Y, € RM*2 with x; = (a;,z;,m;) and {a;}}¥, C R; initial value function (TT) for each
idiosyncratic state an initial guess Vi ( 7;]~) ; tolerance thresholds e aspvn, €vEL, €FC, €5im > 0
aggregate shocks {z;}!_; and tax indicators {1*}]_,.

Simulation, VFI & ADMM
Evaluate 7;; := V/(X).

Initialize ADMM penalty v > 0, multiplier  and slacks t > 0.

Set residuals ¢ Apvm, CVFL GEC) CSim 1= ©0.

while s > €sim do > Simulation Loop
while {rc > epc do > Forecast Loop
Set v;j := Tj;.
while Cygr > eyp do > VFI Loop
compute ¢;; = (u") " (3. V (X; 7ij)) from FOC (29).
while {Apvmv > €apvmv do > ADMM Loop

Minimize the augmented Lagrangian (33) using ALS (3).
Update slack and multiplier using equations (34) and (35).
Adjust the penalty -y to balance primal and dual residuals.

Set ZapMM = |[fnew — told 3
end while
Update Vi = V(; Ti;) and evaluate vg]- = ViI(X).
Set &y := Hv;]- — ;|| and vjj := vgj.
end while

On G compute {¢;}  using V//(-; 7j;), then compute {riz;} ;.
Fit the updated law of motion ji(T') : (z,m) > 11, and set u(T') := ji(T)

/

Set épc = HZ):] — 51']“, ﬁij = Z)l]

end while
Simulate G := {g;}Y, on the grid 4 using V/(-; T;;), starting at .
Select moments { f; }M | using a posteriori model reduction (4.2).
Fit updated tax-shock forecast A(T') := m > 11, and set A(T) := A(T).
Set &sim == ||(g, f) — (¢, /)|, and G := G.

end while

Compute error measure.
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