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Abstract

Fiscal policy in the U.S. and other countries renders intertemporal budgets non-

differentiable, non-convex, and discontinuous. Consequently, assessing work

and saving responses to policy requires global optimization. This paper de-

velops the Global Life-Cycle Optimizer (GLO), which robustly and precisely

locates global optima in highly complex fiscal settings. We use the GLO to

study how a stylized U.S. fiscal system distorts workers’ labor supply and sav-

ing. The system incorporates kinks from federal income tax brackets, Social

Security’s FICA tax, and a notch from the provision of basic income below a

threshold. The GLO reproduces theoretically predicted earnings bunching and

flipping over a remarkably wide range of wage rates. Saving distortions and as-

sociated excess burdens are substantial. Extensions with discrete labor supply,

joint taxation of couples, social security, and labor-income risk demonstrate

the versatility of the GLO. The GLO outperforms value function iteration and

readily solves cases where value function iteration is infeasible.
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1 Introduction

Fiscal systems in many countries are extraordinarily complex due to a plethora of na-

tional and state tax and benefit policies. These policies generally come with program-

specific eligibility conditions and highly non-linear net payment schedules. Kinks in

budget sets from changes in tax brackets are routine. So are notches arising from

benefit eligibility and tax thresholds.1 Furthermore, choice sets are inter-temporally

intertwined, not least due to asset-income taxation and the dependence of Social Secu-

rity benefits on workers’ annual earnings histories. The prevalence of highly complex,

intertemporal budget constraints is no surprise. Politicians signal their value added

by enacting new policies. In so doing, they rarely consider the impact on work or

saving incentives, let alone economy-wide efficiency. The US is a case in point. Its

fiscal system features over 500 tax and benefit programs comprising federal programs,

state programs, and 51 state-specific versions of federal programs.

Understanding the effects of fiscal complexity is challenging. The multitude of

fiscal programs renders intertemporal budget sets non-differentiable, non-convex, and

discontinuous (NND). In such environments, work and saving responses cannot be

assessed by relying on first-order optimality conditions. Instead, they require global

optimization to identify the best of all affordable age-consumption and age-leisure

paths. But feasible global-solution methods must avoid the Curse of Dimensionality,

i.e. computation requirements rising exponentially in the dimensionality of the prob-

lem – in this case, the large number of continuous choices made over the life cycle.2

This paper develops the Global Life-Cycle Optimizer or GLO to overcome these prob-

lems. The GLO searches for globally optimal annual consumption and labor-supply

1E.g., U.S. Medicaid, Supplemental Security Income programs, Section-8 housing thresholds, and
Medicare Part B IRMAA premium thresholds.

2A different form of the Curse of Dimensionality is often encountered in dynamic stochastic
economic models, even absent NND constraints, when the number of continuous states becomes
large (see, e.g., Brumm and Scheidegger, 2017).
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Figure 1: Stylized Static Budget Constraint with Kinks and Notch

FICA-Threshold Claw Back

Leisure

Consumption

Note: This static budget constraint includes a kink from the FICA tax, two kinks from changes in
income-tax brackets, and a notch from the claw-back threshold for basic income. For illustrative
purposes, this figure abstracts from the intertemporal dimension of the problem.

paths building on the pattern search literature (see Torczon, 1997; Audet and Dennis,

2003).

Given the GLO’s relative simplicity, its performance is remarkable as we show by

applying it to a stylized NND net-tax schedule comprising three elements. The first

is a wage tax that includes the seven brackets of the U.S. federal personal income-

tax.3 The second is the 12.4 percent Social Security payroll (FICA) tax levied up to

its ceiling.4 The third element is the provision of $10,000 in basic income for those

earning less than $15,000.5 Figure 1 shows a static NND budget constraint – ignoring

saving – including all three elements of our tax scheme.

To demonstrate the GLO’s ability to make optimal life-cycle work and saving

decisions, we compare the GLO’s solution, assuming our NND fiscal system, to that

3Our stylized policy taxes, for much of the paper, only tax labor income. This isolates fiscal
impacts on labor supply and, given our posited preferences, associated changes to saving. We focus
primarily on labor-income taxation for illustrative purposes only. The GLO is fully capable of
handling total-income taxation, as we show in section 5.

4We ignore, as is standard (see Burtless, 1976), marginal Social Security benefit-tax linkage. This
assumption is reasonable given Social Security’s immensely complex benefit formulas. The system
provides just 12 benefits, but has 2728 basic rules about the 12 benefits in its Handbook.

5This notch proxies for the complete loss of Medicaid, Section-8 housing, Supplemental Security
Income, and other benefits from earning beyond specified limits. We defer income and asset tests
for future analysis.
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computed by discrete value function iteration (VFI). We find that VFI and the GLO

generate essentially identical solutions, yet the GLO is orders of magnitude faster

and more accurate. Moreover, VFI is able to solve the test problem just because its

solution requires only one state variable. The GLO, in contrast, can easily be applied

– as shown below – to problems that go far beyond the capacity of VFI due to the

requisite number of state variables.

Having established the GLO’s accuracy, we focus on two goals – demonstrat-

ing the GLO’s capabilities and versatility and determining labor supply and saving

responses to our NND intertemporal budget sets. Our illustrative preferences are

separable both across time and between consumption and leisure within a given pe-

riod. In addition, we posit equal interest and time preference rates to produce flat

optimal age-consumption profiles absent asset-income taxation or binding cash-flow

constraints. This holds despite the nature of wage taxation. Finally, we often assume

a constant wage rate over the life-cycle. This implies constant annual labor supply

absent taxation or when taxes are either lump sum or linear in earnings. Conse-

quently, in most of our exercises, the shapes and levels of workers’ age labor-supply

profiles convey, at a glance, the presence of NND fiscal policy.

Depending on the worker’s wage, our modest set of fiscal provisions produces

earnings bunching and earnings flipping over remarkably wide ranges of the earn-

ings distribution. Earnings bunching references earning just below tax kinks – higher

marginal tax brackets – and benefit notches – discrete benefit losses arising from

exceeding benefit-eligibility thresholds. Earnings flipping entails supplying relatively

small amounts of labor in some years and large amounts in others. These policy-

induced labor supply reductions dramatically lower annual saving and, consequently,

wealth at retirement. Earnings bunching has long been theoretically predicted (see

Moffitt, 1983; Burtless, 1976) and empirically documented (see Kotlikoff, 1978; Fried-

berg, 1998, 2000). Earnings flipping across years is also the theoretically expected

response to NND frontiers. It permits workers to partially convexify their lifetime

budget sets – to work less and pay lower taxes, on average, over one’s workspan.

While the GLO reproduces theoretically-predicted and empirically-documented

labor supply behaviors, the wide range of wages over which this occurs is surprising.

One would expect major bunching around the $15,000 earnings level to avoid loss of

basic income. But it also occurs, for instance, for workers with quite high levels of
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wages who work less to lower their tax bracket from 32 percent to 24 percent. The

reduction in labor supply from earnings bunching can be massive – up to 40 percent in

our setting. This difference is relative to labor supply under equal annual lump-sum

taxation.

In addition to permanently lowering their labor supply, workers, depending on

their wage rates, will flip back and forth between high and low labor supply. Flip-

pers may switch between earning just before the notch in some years and working

substantially more in other years. Workers near the FICA kink are also prone to

flip. Since the FICA kink is concave, it induces the opposite of bunching, namely

a desire to spend part of one’s working years working intensively above the Social

Security taxable earnings ceiling. The reason is to garner a higher net wage. Another

key finding is the extreme sensitivity of life-cycle saving to the fiscal system. Wealth

at retirement is, in our worst-case finding, 40 percent lower than it would be with

equal-annual lump sum taxes.

We also find moderate to exceptionally large excess burdens measured relative

to lump-sum taxation. These values are highly sensitive to workers’ wages and fiscal

provisions. With all three fiscal elements in place, low-wage workers experience excess

burdens, measured as annual consumption equivalents, as high as 28 percent. This

reflects the presence of the notch at $15,000 leading, for example, a worker with a

full-time wage of $30,000 to earn, annually, only $15,000 in order to keep the $10,000
in basic income. Absent the basic-income-clawback policy, excess burdens are far

smaller, ranging between two and just over five percent, with the maximum reached

by households earning about $100,000 per year.

To demonstrate GLO’s versatility, we also consider discrete labor choice, joint tax-

ation of married couples, internalizing Social Security’s benefit formula, and wage-rate

risk. Discrete choice references limiting the choice set to working either what we de-

fine as full time or what we define as part time in a given year. Doing so can lead

to flipping when it would otherwise not arise. It can also eliminate flipping when it

would arise were the worker unconstrained. Hence, restricting workers to part- or

full-time work is hardly a benign assumption. Taxing married couples jointly has

the theoretically predicted (see, e.g., Kaygusuz, 2010; Guner et al., 2012; Bick and

Fuchs-Schündeln, 2018) impact of discouraging the relative labor supply of lower-wage

spouses. Here, as elsewhere, the GLO delivers both what theory predicts and data
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confirm. It also provides a quantitative sense of fiscal distortions. Our third exten-

sion models Social Security’s earnings-based benefit formula, which relates worker’s

retirement benefits to their past covered earnings history in a highly non-convex and

non-differentiable manner. The GLO has no problem identifying, among other things,

that optimal labor-supply entails five years of substantially lower labor supply given

that only workers’ highest 35 years of covered earnings, out of our model’s 40-year

workspan, enter in their benefit formula. Finally, we illustrate GLO’s potential for

handling not just deterministic, but also stochastic optimization problems by having

GLO maximize lifetime expected utility in the context of uncertain future wage rates.

The paper proceeds as follows. Section 2 reviews the related literature. Section

3 presents our life-cycle optimization problem and details our tax system. Section 4

details the GLO, verifies its accuracy, and highlights its speed. Section 5 first conveys

the remarkable responses of labor supply to the kinks and notches of our illustrative

fiscal system and then measures the associated excess burden. Section 6 presents the

above-listed several extensions. Section 7 summarizes and concludes.

2 Related Literature

An early literature documents bunching and other responses to kinks and notches (aka

cliffs), uses observed bunching to estimate labor supply elasticities, and questions

whether bunching data suffices to identify underlying behavioral parameters.6 Of

most relevance to our paper are studies that recognize the need for global search and

implement global search routines. Burtless (1976)’s paper suggested using piece-wise

linear budget constraints (PLB) to compare utility along different segments of non-

convex budget frontiers. Unfortunately, the PLB approach becomes computationally

intractable when expanded to multiple fiscal programs let alone multiple periods.

Consequently, Burtless (1976), Friedberg (1998), Friedberg (2000), and others using

PLB do so primarily within static (one-period) models featuring a limited number of

6This literature includes Kotlikoff (1978), Zabalza et al. (1980), Danzinger and Plotnick (1981),
Moffitt (1983), Hausman (1985), Pencavel (1986), Fraker and Moffitt (1988), Rust (1989), Moffitt
(1992), Hoynes (1996), Hagstrom (1996), Keane and Moffitt (1998), Blundell and MaCurdy (1999),
Eklöf and Sacklén (2000), Meyer and Rosenbaum (2001), Moffitt (2002, 2003), and Blundell and
Hoynes (2004). More recent articles, including Saez (2010), Chetty et al. (2011a), Brown (2013),
Bastani and Selin (2014), Blomquist et al. (2021), and Bertanha et al. (2023).
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fiscal programs. PLB’s computational constraints as well as the presence, in the data,

of households making theoretically dominated labor supply decisions led MaCurdy

et al. (1990) to approximate kinked and notched frontiers with smoothed functions.7

Yet, smooth frontiers can’t explain earnings bunching or discrete changes in labor

supply from year to year. Zabalza et al. (1980), Fraker and Moffitt (1988), and

Keane and Moffitt (1998) take a different approach to computing global optima of

structural models. They drastically restrict the choice set. Specifically, they assume

no saving and restrict labor supply to three choices – no work, part-time work, and

full-time work. Blundell and Shephard (2012) examine UK tax reform, including the

use of tagging and imperfect observations on hours worked. Theirs is also a static

model, but incorporates six different discrete choices of labor supply. Assuming single-

period agents facing discrete labor-supply constraints comes at a price. Clearly, most

households do save or dis-save. Yes, many households, particularly those with low

incomes, are cash-flow constrained. But the degree to which their constraints bind is

endogenous to future household choices. Moreover, as we show in section 6, restricting

labor supply to discrete options can rule out or rule in suboptimal behavior when such

constraints either don’t apply or are misspecified.

Like Keane and Moffitt (1998), Rust (1989, 1990) pursues global analysis via dis-

cretization. But Rust proposes incorporating intertemporal choice by implementing

discrete-state dynamic programming. He also limits consumption and labor supply to

discrete values. However, he too readily acknowledges computational limits.8 These

discrete choice studies seek to reconcile actual with modeled behavior. Our goals are

different – illustrating the range of potential optimal behavioral responses to NND

policy for assumed behavioral parameters and demonstrating the GLO’s ability to

handle far more complex economic decision problems by avoiding dynamic program-

ming, thereby mitigating the Curse of Dimensionality.

Moore and Pecoraro (2020, 2021, 2023) also restrict labor supply to discrete val-

ues in computing global life-cycle optima. But they provide four major improvements

over prior discrete-choice analyses. First, they incorporate an extensive range of NND

7In so doing, they were able to incorporate wage-rate measurement error, which could empirically
reconcile otherwise dominated choices as well as permit testing rationality (Slutsky) conditions.

8For example, fully considering Social Security requires treating all past covered earnings as
state variables. Rust sidesteps this problem by assuming Social Security benefits are determined by
average past-covered earnings.
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fiscal policies. Second, their analysis is general equilibrium, entailing computation of

the transition path of life-cycle economies featuring NND policies. Third, they in-

corporate a wide range of realistic elements, including housing choice, the decision

to rent or own, fixed costs of working, home production, child care costs, bequests,

uncertain longevity, and more. And fourth, building on Carroll (2006) and Iskhakov

et al. (2017), they introduce a hybrid endogenous grid method approach to dynamic

programming that avoids interpolation, permits global optimization, yet suffers from

the curse of dimensionality in the number of state variables. Moore and Pecoraro’s pa-

pers teach valuable lessons. The most important for our analysis is their finding that

incorporating explicit NND fiscal policy materially matters both to microeconomic

behavior and macroeconomic outcomes.

Before developing the GLO as a robust global optimizer for deterministic NND

life-cycle models with continuous choice, we tried a variety of traditional global opti-

mization methods, including genetic and random search algorithms – without success.

Building on the pattern search literature (see Torczon, 1997; Audet and Dennis, 2003)

and including features tailored to fiscally realistic life-cycle problems proved success-

ful. Of course, other methods, including those discussed and developed in Arnoud

et al. (2019) and Guvenen (2011), may be able to match GLO’s optimization per-

formance if properly adapted to handle such fiscal conditions. Arnoud et al. (2019)

provide a comparison of specific global optimizers, including several versions of Tik-

Tak developed in Guvenen (2011), which they apply to method-of-simulated-moments

estimation as well as to analytical test functions. We also test the GLO against these

functions, in appendix C, highlighting its speed, reliability, and scalability.

One might also ask whether neural nets could help find global solutions in our

setting. Azinovic et al. (2022), Maliar et al. (2021), and Duarte et al. (2021) demon-

strate the impressive power of machine learning to handle complex life-cycle problems,

including various forms of uncertainty. However, as discussed in Duarte et al. (2021),

machine learning is ill suited to deal with NND frontiers due to its reliance on differ-

entiability.
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3 The Life-Cycle Problem

Our life-cycle model is simple apart from assumed kinks and notches in the net tax

schedule. Depending on the case under consideration, income will reference either

wage income or total (wage plus asset) income.

3.1 Lifetime Utility

Households live for T periods with lifetime utility given by

T∑
t=1

(
1

1 + ρt

)t−1

U(ct, lt), (1)

where ρt is the time preference rate, ct is consumption, and lt is labor supply, all at

time t. We assume that per-period (annual) utility obeys the commonly-applied King

et al. (1988) additively separable functional form,

U(c, l) = log c− χ
l1+1/γ

1 + 1/γ
, (2)

where γ is the Frisch elasticity and χ is a scaling parameter, which is set to 1 for most

of the analysis. Households work for the first R periods only, thus lt = 0 for t > R.

The per-period budget constraint in t is:

ct + at+1 = wtlt + (1 + rt)at − T (yt), (3)

where at are the beginning-of-period assets, wt is the wage rate, rt is the interest rate

on assets, T is the net-tax function, and yt = wtlt is labor income.9 Note that if the

after-tax wage rate is constant and the interest rate equals the time preference rate,

rt = ρt, labor supply is constant. We focus on examples satisfying this assumption

since it implies that any deviation from a constant age labor-supply profile reflects

the kinks or notches of our net tax schedule.

Throughout the paper, we set the period length to be one year, and for the most

part, we make the following parameter choices. We set the annual interest rate on

9We consider taxing total income, i.e. yt = wtlt + rtat, in section 5.

9



Table 1: Tax Brackets and Marginal Tax Rates

Taxable Income Marginal Tax Rate

$0 − $10, 275 10%
$10, 275 − $41, 775 12%
$41, 775 − $89, 075 22%
$89, 075 − $170, 050 24%
$170, 050 − $215, 950 32%
$215, 950 − $539, 000 35%

$539,000+ 37%

Note: Tax brackets for single filers in 2022.

assets and the time preference rate to 2 percent. For the Frisch elasticity, we choose a

value of 1, which is among the higher range of values found in the empirical literature

(see Chetty et al., 2011b). We assume that household have a 40-year workspan and

a 60-year lifespan. Finally, agents are not able to borrow, that is at+1 ≥ 0 for all t.

3.2 Stylized Tax System

We consider net-tax codes with n tax brackets, each characterized by cutoff value bi,

intercept xi, and proportional tax rate τi:

T (yt) =


x1 + t1yt if yt ∈ [0, b1]

xi + ti(yt − bi−1) if yt ∈]bi−1, bi], for i = 2, . . . , n,

xn + tn+1(yt − bn−1) if yt ∈]bn,∞[.

Our baseline net-tax schedule comprises three components. First, the 2022 US single’s

tax brackets reported in table 1. Second, Social Security’s 12.4 percent Social Security

FICA tax on labor earnings through $147,000.10 Third, we posit a basic income of

$10,000 paid to those with incomes below $15,000 – a proxy for welfare-benefit thresh-

olds arising under the Supplemental Security Income, Medicaid, Section-8 Housing,

10There is no ceiling on the 2.73 percent Medicare FICA tax. In what follows, the FICA tax
denotes only the Social Security portion of the overall FICA tax. We also treat the division between
“employer” and “employee” portions of the FICA tax as economically irrelevant; i.e., we assume
workers bear the full tax regardless of how the remittance of the full tax by employers to the
government is labeled.
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and other programs. In addition to considering this baseline schedule, we also present

results assuming just income taxation, TI , and just income and FICA taxation, TIF .

When comparing the three schedules we denote the baseline tax schedule by TIFB and

refer to the three schedules as “INC”, “INC+FICA”, and “INC+FICA+BASIC”.

Figure 2(b) shows that INC has convex kinks only and that the FICA tax adds a

non-convex kink.11 Finally, figure 2(c) displays the notch at the claw-back threshold

for basic income present in our baseline tax code INC+FICA+BASIC.

11Note that the convex (concave) kinks in the tax schemes displayed in figures 2(a) and 2(b)
correspond to concave (convex) kinks in budget sets as depicted in Figure 1.
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Figure 2: US Tax Code: Kinks and Notch
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4 The Global Life-Cycle Optimizer

This section first presents the GLO algorithm and then showcases its ability to solve

highly NND life-cycle problems efficiently and accurately.

4.1 The Algorithm

The GLO algorithm is a variant of pattern search – a well established global opti-

mization method.12 The basic algorithm seeks the global maximum of a function

f : RN → R. The GLO starts from an arbitrary point, x0 ∈ RN . To generate the

next point in the sequence, xk+1, the algorithm carries out a so-called polling step.13

In each polling step a set of J points, the poll set, is constructed by moving from the

current point in J different directions, i.e. adding J different vectors to xk. Each of

these J vectors is given by multiplying a spanning direction d ∈ D = {d1, . . . , dJ}
with a scalar m, called the mesh size.14 The poll set is thus given by:

P = {xk +m · d : d ∈ D} (4)

If one of the points in the poll set, p ∈ P , improves the objective function relative

to the current point, f(p) > f(xk), the poll is called successful and the point that

achieves this improvement becomes the current point in the next iteration, xk+1 = p.15

If no improvement is found, f(p) ≤ f(xk) for all p ∈ P , then the current point is

retained for the next iteration, xk+1 = xk. Furthermore, if the poll was successful,

the mesh size is increased such that the algorithm “zooms out” and considers a larger

space to find further improvements. In the case of an unsuccessful poll, the mesh size

is reduced, i.e., it “zooms in.” The procedure continues until the mesh size falls below

a given threshold.

12See Torczon (1997) or Audet and Dennis (2003) for a general exposition.
13The general pattern search algorithm can also include a so-called search step in addition to the

polling step, see Audet and Dennis (2003).
14A common pattern for the spanning directions is to vary only one dimen-

sion at a time, yet in both directions, thus setting J = 2N with D =
{(1, 0, . . . , 0), ..., (0, 0, . . . , 1), (−1, 0, . . . , 0), ..., (0, 0, . . . ,−1)}.

15If one chooses a complete polling, the point associated with the best objective function value is
chosen. Alternatively, one could stop the polling after any improvement is found and go to the next
iteration.
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Our life-cycle problem consists of finding the agent’s paths of consumption and

labor supply that maximize lifetime utility, or, as illustrated in an extension, lifetime

expected utility, subject to per-period cash-flow constraints. To apply pattern search

to this specific optimization problem, we make three substantial adjustments to the

basic algorithm. First, when constructing elements of the poll set we simultaneously

consider changes in more than one dimension. We draw two of these dimensions

randomly, permitting trade offs between any two values of consumption and/or labor

supply. In addition, we always adjust terminal consumption to ensure lifetime budget

balance, that is, all remaining assets are consumed in the last period. The second

modification makes the change in one of the chosen dimensions stochastic, replacing

the mesh size with a random number drawn from a uniform distribution on an inter-

val around the mesh size. Our third adjustment ensures that all points in the poll

set satisfy the cash-flow constraints. For each point, we successively consider each

period’s budget, starting at t = 1; in case the cash-flow constraint is violated, we

adjust consumption so that the constraint is precisely met. With this combination of

features, GLO’s algorithm can, as now shown, tackle highly NND life-cycle problems.

Appendix B provides a formal description of the GLO algorithm. Our application

of the GLO to our specific life-cycle NND problem proceeds as follows. Recall that

agents work from 25 to 65 years and consume from 25 to 85 years. Consequently,

their optimal solution comprises a 100-element vector with 60 annual levels of con-

sumption and 40 annual levels of labor supply. The GLO starts by setting a mesh size

and choosing a (random) starting guess. The 100th element references age-85 con-

sumption, which is always set to satisfy the household’s intertemporal budget given

values of the other elements. Call this vector x and denote the resulting lifetime

utility f(x). The GLO next chooses two of the first 99 elements at random. The first

of the two values is both increased and decreased by the mesh size. The second of the

two values is both increased and decreased by the current mesh size multiplied by a

number randomly chosen from a uniform distribution between 0 and 1.25. The four

up-up, up-down, down-up, down-up perturbations together with the other 96 vector

elements (including the lifetime-budget balancing final consumption level) provide

four candidate solution vectors. We evaluate our objective function for each and re-

peat the process 500 times. We then find the maximum of the 2000 (4 times 500)

evaluations. Call the maximizing vector p. If f(p) > f(x), set x = p and double the

mesh size. If f(p) < f(x), leave x unchanged and reduce the mesh size in half. Next,
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we repeat the above process starting with the potentially revised x until the mesh

size falls below a specified value. Finally, we restart the entire algorithm several times

(depending on the complexity of the problem) with either different starting guesses

and/or different seeds for the random number generator, and take the maximum of

the stored optima as our solution.

Why does the GLO find the global optimum? Intuitively, if the candidate solution

vector is far from the optimum, the algorithm will move to a vector that is close to

a local or global optimum. Near a local optimum, large and small deviations (by the

mesh size) may succeed. Small deviations that succeed result in an increase in the

mesh size and thus the subsequent step may move the solution away from the local

optimum. Near a global optimum, small deviations may succeed, bringing the solution

even closer to the global optimum. Large deviations, in turn, will be unsuccessful

resulting in an ever smaller mesh size eventually triggering the convergence criterion,

which ends the algorithm. The combination of initializing the GLO with a random

guess and incorporating multi-starts delivers the global optimum with, as now shown,

high accuracy.

4.2 Testing the Algorithm

For the class of problems we aim to solve, with NND intertemporal budget sets, ana-

lytic solutions are not available to test GLO’s accuracy and its convergence behavior.

To convince ourselves of the reliability of the GLO algorithm, we, therefore, proceed

in two steps. First, we apply the GLO to solving standard analytical test functions

for global optimization. We pick functions that Arnoud et al. (2019) use to solve

up to 10-dimensional problems and find that, as appendix C reports, the GLO can

quickly, precisely, and robustly find the analytically known global optimum of these

test functions in up to 100-dimensional problems. Second, we compare the GLO’s

results on our NND life-cycle problems with the results of discrete value function

iteration (VFI), which is in principle able to solve these problems, albeit with enor-

mous costs and subject to a very strong Curse of Dimensionality. We find that for

our test-problem with only one state variable, namely asset holdings, VFI and the

GLO basically identify the same solution, yet the GLO is orders of magnitudes faster

and, indeed, more accurate. Note, however, that the GLO can easily be applied to
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Table 2: GLO versus Value Function Iteration

Wage Rate

$40,000 $80,000 $130,000 $200,000

CEV (GLO vs. VFI)
Best +0.0159% +0.0175% +0.0174% +0.0175%
Median −0.0850% +0.0175% +0.0172% +0.0175%

Runtime (s)
GLO 123 55 55 54
VFI 11132 11495 11388 11769

Notes: Differences between the GLO solution and VFI solution, measured in CEV, show that the
(best) GLO solution is slightly better than the VFI solution based on the value of the objective
function. This confirms GLO’s ability to identify global maxima of NND problems.

problems with large numbers of state variables, as in the Social Security example of

section 6.3, whereas VFI cannot.

For our comparison between the GLO and VFI, we solve the life-cycle problem of

section 3 with different wage rates. Appendix C details our VFI implementation. But

to summarize, we parallelize the VFI on 80 cores and also use 80 cores for the GLO

by letting it run 80 times with differing starting guesses. To compare the solutions

found by VFI and the GLO, we compute the percentage deviation in consumption

equivalent variation (CEV), as defined in appendix A, between the VFI solution and

the different GLO solutions. Table 2 reports these deviations for both the best (among

80) solutions of the GLO and the median solution of the GLO. It also reports run

times.

We find that the best GLO solution is superior to the VFI solution for all wage

rates – which are held constant over the life-cycle for simplicity, although a non-

constant profile poses no problem for the GLO as shown below. The median GLO

solution is basically as good as the best VFI solution for all wage rates except $40,000
– a low enough wage to make the basic-income notch relevant. But even in this case,

the median solution deviates from the best solution by just about one tenth of one

percent.16

16This observation justifies adjusting GLO’s algorithm to let it run to completion based on nu-
merous initial guesses and then picking the best solution – a multi-start routine as is common in
global optimization.
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As for compute time, the GLO is extremely fast, solving the hardest problem in

roughly two minutes and solving all other problems in roughly one minute. VFI in

turn, takes about three hours on all problems, despite being parallelized and optimized

in various ways as explained in Appendix C. The main takeaway here, however, is

not that the GLO is faster than VFI’s brute force method in solving NND problems.

Instead, it’s the GLO’s ability to derive essentially the same solution as VFI, certifying

its ability to identify global maxima of NND problems. Many problems, including

the Social Security example of section 6.3, are not substantially harder for the GLO

to solve than the test problem at hand, but could never be addressed with VFI due

to the Curse of Dimensionality.

5 Labor Supply Response to Kinks and Notches

In this section, we first analyze labor supply bunching as a response to convex kinks

in the income-tax code leaving out FICA as well as the provision of basic income.

Second, we add the FICA tax, which introduces a concave kink and thereby gener-

ates flipping behavior. Third, we examine the combination of flipping and bunching

arising from including basic income and its associated notch. Finally, we discuss the

distortions and excess burden that are associated with all these elements fo the tax

code. Most of this section assumes worker’s wages are fixed in real terms throughout

their working years.

5.1 Bunching at Convex Kinks From Income-Tax Brackets

We start by focusing on the two income-tax kinks that are most convex – the jump

in the marginal tax rate from 12 to 22 percent occurring at $41,775 and the jump

from 24 to 32 percent occurring at $170,050. Consider two workers earning wage

rates of $35,000 and $40,000 for one unit of labor supply (i.e., one year of full-time

work). As figure 3(a) shows, the lower-wage worker works substantially more than

the higher-wage worker.17 As detailed below, this reflects the high-wage worker’s

response to her much higher marginal tax rate. As a consequence, the higher-wage

17If we consider one unit of labor as the average number of hours worked in the U.S. in 2022, then
a difference of five percentage points represents about 90 hours of work.
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Figure 3: Life-Cycle Profiles of Households Facing Tax Code with Convex Kinks
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(a) Low-Wage-Rate Households

25 30 35 40 45 50 55 60 65

1.05

1.06

1.07

1.08

1.09

1.10

Labor Supply

25 30 35 40 45 50 55 60 65

0
20,000
40,000
60,000
80,000

100,000
120,000
140,000
160,000
180,000

Taxable Income

25 30 35 40 45 50 55 60 65

0

5,000

10,000

15,000

20,000

25,000

30,000

35,000

40,000

Taxes  Paid

25 35 45 55 65 75 85

102,000

104,000

106,000

108,000

110,000

112,000

114,000

Consumption

25 35 45 55 65 75 85
-120,000

-100,000

-80,000

-60,000

-40,000

-20,000

0

20,000

40,000

Savings

25 35 45 55 65 75 85

0
200,000
400,000
600,000
800,000

1,000,000
1,200,000
1,400,000
1,600,000
1,800,000

Assets
w = 150k
w = 170k

(b) High-Wage-Rate Households

Note: Life-cycle profiles for households facing labor taxation under the income tax code with convex
kinks only (INC tax). Consumption profiles are flat as interest rate and time preference rate are
equal and asset income is not taxed. Both assumptions are for illustration and are relaxed below.
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Figure 4: Bunching at Convex Kinks
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(a) Convex Kink at $41,775
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(b) Convex Kink at $170,050

Note: Labor supply and labor income as a function of the wage rate. Bunching occurs on the gray
lines, which represent boundaries between two tax brackets.

worker’s consumption is only 7.5 percent higher while earning 14.3 percent more per

unit of labor. Figure 3(b) provides a similar picture for the case of high-wage-rate

households in the vicinity of the convex kink at $170,050.

Next, we consider the labor supply behavior for ranges of wage rates around the

two highly convex kinks of the income tax code. Figure 4(a) shows how labor supply

and labor income depend on the wage rate. For a substantial range of wage rates

– from $37,500 to $39,500 – households chose to earn exactly $41,775, the amount

corresponding to the major convex kink at the lower end of the tax schedule. Within

this range of wage rates, labor supply is strongly decreasing in the pre-tax wage.

Starting at a wage of about $40,000, households are willing to pay the higher marginal

tax rate, and labor supply and income both increase. However, labor supply remains
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Figure 5: Bunching over the Life-Cycle when the Wage Rate Grows
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Note: Life-Cycle profiles of high-wage-rate household with one percent yearly wage growth.

substantially below the labor supply of agents with lower wage rates. As shown

in figure 4(b), the behavior is qualitatively similar at the other highly convex kink

– $170,050. The range of bunching wage rates, however, is much larger, ranging

between $154,000 and $163,000.

We now turn to bunching across time. Consider, in figure 5, bunching by a worker

whose wage rate rises by one percent annually starting at $109,184.18 This worker’s

labor supply remains low for several years. Then it begins to rise, but not by enough

to push the worker above the 24 percent bracket. This continues until the worker

reaches the $170,050 bracket threshold. At this point, the worker reduces their labor

supply each year for several years to avoid moving into the 32 percent bracket, which

they eventually find optimal to do – when their wage becomes sufficiently high.

Bunching across time can also occur with a fixed wage rate if total income is

taxed. So far, we’ve focused on labor-income taxation to isolate its impact on labor

supply. We now apply the federal tax schedule to total income, including asset in-

come. Figure 6 displays life-cycle profiles of a household with a wage rate of $130,000.
18Note that the present value of this wage path is equal to the present value of earning a constant

annual wage of $130,000.
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Figure 6: Life-Cycle Profiles of Household Facing Total Income Taxation
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Note: Life-Cycle profiles of a household with a wage rate of $130,000 when total income is taxed.

The consumption profile is now generally downward sloping as capital-income taxa-

tion discourages saving. Stated differently, as theoretically expected, taxing saving

(actually, the return to saving) encourages current over future consumption. Simi-

larly, labor supply tends to be upward sloping since capital-income taxation favors

working more when old (taking leisure earlier). However, the convex kink at $170,050

interferes with this pattern. As the household accumulates assets and increases its

labor supply, taxable income grows over the life-cycle until it reaches $170,050. From

then on, the household reduces its labor supply and adjusts its saving to stay just

at that level of total income – the household bunches over time at a total income

corresponding to the upper bound of a tax bracket. All in all, the above analysis

shows that the US tax code has a strong tendency to induce bunching and that the

GLO is able to robustly solve the resulting optimization problem with NND budget

sets.
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Figure 7: Life-Cycle Profiles of Households Facing Income Plus FICA Tax
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Note: Life-Cycle profiles of household with wage rates close to the FICA threshold of $147,000
exhibiting flipping around that threshold.

5.2 Flipping due to FICA’s Concave Kink

We next include the 12.4 percent FICA payroll tax with its ceiling (concave kink) at

$147,000. Figure 7 displays life-cycle profiles for households with annual wage rates of

$125,000 and $130,000. Despite having flat consumption profiles, their labor supply

profiles exhibit frequent flipping. In particular, agents jump back and forth between

two tax brackets – below and above the FICA threshold of $147,000. Although the

lower bracket is characterized by a higher marginal tax rate, continually working

sufficient hours to exceed the FICA threshold in all periods is sub-optimal. At the

same time, it’s also sub-optimal to always stay below the threshold. Hence, the

optimum entails working less in some years and more in others.

Figure 8 shows how labor supply and, thus, labor income are affected by the non-

convex kink. Workers with wages between $123,000 and $134,500 flip. To be precise,

they flip between low labor supply (the blue dots in the plot) which generates income

substantially below the FICA threshold (gray line) and high labor supply (the red

dots) which generates income much higher than the FICA threshold. Generating
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Figure 8: Flipping at FICA’s Concave Kink
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Note: Labor supply and labor income as a function of the wage rate. Flipping occurs in the
neighborhood of the lower gray line that represents the FICA threshold at $147,000. Households
earning between $123,000 and $134,500 flip between the blue and the red points. Households with
lower or higher wage rates do not flip, corresponding to the green points.

labor income close to the FICA threshold is never optimal – the exact opposite of

bunching.

5.3 Basic-Income Claw-Back Notch: Bunching and Flipping

We now turn to flipping and bunching due to the notch at $15,000 in the tax and

transfer scheme. Recall, the notch is generated by the assumption of a $10,000 basic

income that (single) households receive provided they earn less than $15,000. Figure
9 displays the age-labor supply profile for workers with three different wage rates

– $30,000, $38,000, and $46,000. Figure 10 displays the labor supply and resulting

labor income for a wide range of wage rates.

Workers with a wage rate below roughly $35,000 reduce their labor supply each

year to stay below the $15,000 threshold. Starting from wage rates around $45,500,
individuals choose to never collect the basic income. Between these values, however,

it’s optimal to collect basic income in some years and to earn substantially above the

threshold in other years. In fact, it is never optimal to supply labor that generates

anything strictly between the $15,000 threshold for the basic benefit and the upper

bound for the 12 percent tax bracket at $41,775. Households who flip accumulate

substantial savings in the periods they work. While one might argue that this is

ruled out by asset tests in most real-world transfer schemes, we believe that such
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Figure 9: Life-Cycle Profiles of Households Facing Basic-Income Claw-Back Notch
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Note: Life-cycle profiles for three (low) wage rates, one resulting in below-threshold labor supply
throughout working life, one in above-threshold labor supply, while the middle one implies flipping.

Figure 10: Bunching and Flipping at the Basic-Income Claw-Back Notch
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Note: Labor supply and labor income as a function of the wage rate. Between $19,000 and $45,000
the notch induces bunching. In addition, between $35,000 and $45,000, there is flipping between
blue and red points. Numbers indicate in how many periods the respective choice is made.

behavior is still relevant. There are often exceptions for assets, like housing and cars.

In addition, households can hide assets by ‘gifting’ them to friends or relatives.
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5.4 Distortions of Labor Supply and Excess Burdens

Figure 11(a) displays our fiscal system’s impact on labor supply compared with that

arising under lump-sum taxation. In considering the results, bear in mind that, given

our preferences, a simple linear tax would make no difference to labor supply. When

households face just the income-tax schedule with its convex kinks, labor supply is

reduced by five to sixteen percent and this distortion tends to increase in the wage

rate. Intuitively, non-linearity accentuates substitution effects. When the FICA tax

is added to the schedule, labor supply is distorted substantially more, especially for

those with low wage rates.19 Interestingly, the labor distortion is now no longer

monotonically increasing in the wage rate, as marginal tax rates are no longer mono-

tone. Finally, when we add basic income and its clawback at $15,000, labor supply
is massively distorted for low-wage households.

Of course, the labor supply distortions just described have a substantial impact

on savings. Figure 11(b) reports the percentage deviation of wealth at retirement

relative to the corresponding lump-sum tax case. In our baseline tax scheme (blue

line), wealth accumulation is reduced substantially for all wage rates, with reductions

ranging between 15% and 40%. Accumulated wealth inherits the non-monotonicity

from the labor supply results. The largest reduction in savings is experienced by

the low-wage rate workers, while the smallest reduction is experienced by households

close to the FICA threshold.

Analysis of the excess burden from taxation – the cost of distorting household

consumption and leisure (labor supply and saving) decisions – was made a mainstay

of public finance by Harberger (1964).20 We build on these traditional studies by

measuring excess burdens when fiscal systems are NND. To measure the distortions

produced by our tax system, we follow the standard procedure – compare, as a con-

sumption equivalent variation (CEV), distorted lifetime utility with lifetime utility

under lump-sum taxation. CEV measures the percentage increase in annual con-

19The FICA tax is proportional. For our preferences, proportional taxes have no impact on
uncompensated labor supply. But the distortion we measure involves compensated labor supply, i.e.,
just substitution effects, since we are ”compensating” workers for the elimination of distortionary
taxation with lump sum taxation. Hence, raising total marginal taxation, even proportionately,
exacerbates the distortion.

20A multitude of studies applied Harberger’s approach to all manner of tax-induced distortions.
Auerbach (1985) and Auerbach and Hines (2002) provide extensive reviews of this literature.
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Figure 11: Distortions and Excess Burdens
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(a) Labor Supply Distortion
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(b) Impact on Wealth Accumulation
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Note: Comparison of the different stylized tax schemes with lump-sum taxation. Panel (a) shows
labor supply distortion and panel (b) distortion of saving for retirement. Panel (c) reports the excess
burden of the respective tax schemes measures in CEV.
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sumption that will raise a distorted worker’s lifetime utility to that enjoyed under

lump-sum taxation. Appendix A provides the precise formula. To control for cash-

flow constraints, we collect, from each worker at a given age, the same lump-sum net

taxes as they pay when facing one of three distorted tax systems. The first includes

just the federal income-tax kinks, the second includes those kinks, plus the concave

kink from the FICA tax, and the third includes all kinks plus basic income and the

notch from its clawback.

Figure 11(c) shows that the full set of tax provisions produces huge distortions for

low-wage workers. The distortion of labor supply and saving decisions peaks around

40 percent and the associated excess burden at over 25 percent. The massive fiscal

burden arising solely from distorting behavior drops dramatically for workers earning

$50,000 or more, for whom the basic income provision becomes irrelevant. As the red

line shows, federal income taxes produce, on their own, small excess burdens apart

from those earning above $160,000 pre-tax. When we add in the FICA tax, it becomes

moderate, at about five percent, for medium wage households.

6 Discrete Choice, Couples, Pensions, and Risk

Can the GLO handle discrete choice, joint taxation of spouses, and social security?

Yes, as this section shows. This is expected. Given GLO’s solution method, there

is nothing special about these cases or, indeed, incorporating additional elements,

such as a distaste for participation in welfare programs or other fiscal provisions

emphasized by Moffitt (1983). Including life-cycle risk, in contrast, poses a much

greater challenge for the GLO, which we address in our final extension.

6.1 Discrete Labor Supply

Next, we compare optimal choice for the hitherto considered case of fully flexible

labor-supply with the case of discrete choice. Discrete choice references limiting the

choice set to working either what we define as full time or what we define as part

time in a given year. As our example shows, restricting behavior to specific discrete

choices when such restrictions don’t hold can lead to flipping when it would otherwise

not. Moreover, it can preclude flipping when flipping would otherwise be optimal.
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Figure 12: Comparing Discrete and Continuous Labor Choice
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Note: Labor supply of worker with $130,000 wage rate who is either restricted to full-time or part-
time work (discrete labor) or not restricted (flexible labor). The left-hand side assumes our standard
disutility of labor parameter, χ = 1. The right-hand assumes χ = 1.15. With flexible labor, the
household flips around the FICA threshold for χ = 1, yet stays below it for χ = 1.15. With discrete-
labor, the household always works full time for χ = 1, yet sometimes works part time for χ = 1.15.

Figure 12 considers a $130,000-wage worker who is limited to working either full or

part time. Full time (half time) is defined as providing 1.2 (0.6) units of labor supply

in a period. The left-hand panel is based on the same preferences as used above. The

right-hand panel multiplies the disutility of work in each period by 1.15. The solid

blue curve shows the optimal age-labor supply profile when labor supply is discrete.

The dotted curve shows the corresponding fully flexible labor-supply case. In the left

panel, restricting labor supply leads to no flipping when flipping around the FICA

threshold would otherwise arise. In the right panel, the opposite occurs: Optimal

discrete choice features flipping – occasionally working part time – when optimal

flexible choice entails fixed annual labor supply. This has important implications for

estimating structural labor-supply models. It suggests that assuming discrete choice

to make one’s model computationally tractable may be problematic.
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6.2 Taxing Couples

Taxing couples on their joint income renders the two spouses’ labor-supply decisions

interdependent. To examine this inter-dependency, we assume that both household

members are the same age and live for T periods with joint lifetime utility given by

T∑
t=1

(
1

1 + ρt

)t−1

U(c1,t, c2,t, l1,t, l2,t), (5)

where ci and li are consumption and labor supply of household member i = 1, 2.

Per-period utility satisfies:

U(c1, c2, l1, l2) = 2 · log
(
c1 + c2

2

)
− l

1+1/γ
1

1 + 1/γ
− l

1+1/γ
2

1 + 1/γ
. (6)

Thus, spouses value average consumption, whereas their two disutilities of labor sup-

ply are simply added together. Both spouses retire at 65, both have the same time-

preference rate, and both have the same Frisch elasticity of labor supply. Although

positing couples facing joint taxation adds another labor-supply path over which the

GLO must optimize, the program readily handles this. To be clear, we continue to

randomly adjust two values of either consumption or labor supply in each iteration

of our stochastic pattern-search routine. But now the two random adjustments are

chosen from the set of annual labor supplies of each spouse and the annual levels

of the two spouses’ common consumption. Under joint taxation, household wage in-

come is pooled and subject to the same marginal tax rates as in table 1, but with

doubled levels of tax brackets. Under separate taxation, each spouse’s wages are taxed

separately according to table 1. The FICA tax treats spouses as single. As for the

provision of basic income, couples whose joint labor earnings are less than $30,000
receive $20,000.

Figure 13 displays the labor supply of each spouse as well as taxable family labor

income. Each row references a different couple with the higher earner’s wage displayed

in the first column and the lower earner’s wage shown in the second column. The

third column displays the couple’s total taxable labor income. Blue lines reference the

case of joint taxation and red lines denote separate taxation. The first row considers

a relatively low-wage couple with wage rates of $50,000 and $30,000. There are two
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remarkable findings. First, under both tax schemes, the two household members

coordinate to work less in some periods to collect the basic income. Second, when

comparing the two tax schedules, joint taxation discourages the secondary earner from

working, leaving that spouse working substantially fewer hours. This reduces overall

taxable family income, even though joint taxation results in lower average taxes for

any given pair of labor supply choices. This second observation also pertains to the

case of our higher earning couple, with high and low spousal wage rates of $110,000
and $80,000, respectively. In this case, the primary earner flips their labor supply

above and below the FICA threshold. The secondary earner, in contrast, works the

same amount at all ages.

The third row considers a couple with even higher wage rates – $130,000 and

$100,000. There is no longer any flipping: the primary earner remains above the FICA

threshold while the secondary earner remains below. However, in this case, joint

taxation not only lowers the secondary earner’s labor supply. It also substantially

increases the primary earner’s labor supply. Consequently, taxable family income

increases. In all three cases, the gap between the amount of labor supplied by the

primary earner and the secondary earner increases in switching from separate to joint

taxation. Joint taxation is always preferred by our married households. The welfare

gain is substantial for the low-income case – roughly 5 percent as a CEV. It is marginal

for the higher-earning couple – less than one percent.

6.3 Social Security

The GLO can also seamlessly handle Social Security’s retirement-benefits formula,

which, as noted, is a function of a worker’s highest past 35 years of covered earnings.

Including the system’s benefit formula is simple. We just add it to our model as

another fiscal program and let the GLO compute optimal labor supply, consumption,

and savings paths incorporating the benefit formula’s complex work incentives and

disincentives.

Generally, Social Security retirement benefits are determined in three steps. First,

eligibility is established based on the accumulation of Social Security credits. A worker

must earn at least 40 credits over their working life. In 2025, one credit corresponds

to yearly gross earnings of $1,810, with a maximum of four credits obtainable per
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Figure 13: Labor Supply when Couples are Taxed Jointly or Separately
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Note: Labor supply and taxable family income over the life cycle for three different types of couples.
In the first case, both earners coordinate to collect basic income in some periods. In the second case,
the primary earner flips around the FICA threshold. In the third case the primary earner increases
labor supply substantially when taxed jointly to make use of lower marginal rates.

year. Step two entails computing the worker’s Average (Indexed) Monthly Earnings

(AIME). This is done by selecting the 35 highest annual income values, summing

them, and dividing by 420 (35 years × 12 months). Third, we calculate the Primary

Insurance Amount (PIA), which forms the baseline retirement benefit. In 2025, the

PIA is calculated as the sum of 90% of AIME up to $1,226, 32% between $1,226 and

$7,391, and 15% of anything above $7,391. We then directly take the resulting annu-

alized PIA as our benefit amount. Our stylized analysis departs from several Social

Security benefit provisions. First, in the actual system, past earnings are indexed,
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Figure 14: Bunching at upper PIA Bend Point
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Note: Labor supply and labor income around the upper bend point of the PIA formula, located at
$7,391 monthly (i.e. $88,692 yearly) income.

through age 60, to reflect growth in economy-wide average earnings. However, since

our model assumes zero real nominal wage growth, it avoids this complication. Sec-

ond, Social Security’s retirement benefit depends on the age of first collection, with

delayed collection providing a higher annual benefit. As our retirement age is fixed, we

ignore both ”Early Retirement Reductions” and ”Delayed Retirement Credits” and

set workers’ retirement benefits equal to their PIAs. Third, U.S. retirement benefits

are subject to federal and well as state-specific income taxation. Incorporating such

taxation would introduce additional kinks, obscuring the analysis. For this reason,

we omit benefit taxation.

Beyond showing that the GLO can readily handle this extended optimization

problem, our results provide some interesting insights. For instance, figure 14 high-

lights how the sharp drop in the PIA benefit bracket at an AIME of $7,391 induces

substantial bunching around the corresponding annual gross earnings of $88,692, as
earning beyond that point produces far lower increases in the PIA and, thus, one’s

retirement benefit. Moreover, the fact that only the 35 highest yearly earnings matter

for determining the PIA is reflected in the household’s labor supply profile in figure

15. During 5 years, labor supply drops to a lower level, with the timing of these devi-

ations being entirely random. In other words, compared to a hypothetical retirement

system where all yearly income levels are considered identically in calculating retire-

ment benefits, our household, which works for 40 years, increases its labor supply

during 35 of those years and decreases it during 5 others, to exploit the asymmetric

calculation of AIME.
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Figure 15: Life-Cycle Profiles with Retirement Benefits
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Note: Life-cycle profiles for a household with a wage rate of 75,000, receiving retirement benefits. As
only the 35 highest yearly earnings are considered in determining retirement benefits, the household
chooses to supply less labor during the remaining 5 years.

6.4 Optimal Choice under Life-Cycle Risk

Solving problems with NND budget sets that also include life-cycle risk poses a

formidable challenge. One approach that could readily be implemented with our

current version of the GLO is to follow Cai and Judd (2023) and assume certainty-

equivalent behavior.21

The standard, but far more challenging path toward handling uncertainty requires

the use of dynamic programming. A variant of the GLO might be used to find optimal

policies in each step of value function iteration. While the GLO will likely be up to this

task, a major additional challenge arises: interpolating the resulting non-differentiable

value function accurately.22

21Agents, in this case, make decisions in each period as if all future shocks equal their expected
values. This transforms lifetime uncertainty problems into sequences of deterministic problems,
which, as we’ve seen, the GLO can readily handle. The concern here is whether this approach
properly captures risk averse behavior, specifically precautionary consumption and labor supply.

22A potential way to interpolate the value function in several dimensions while preserving mono-
tonicity and concavity is Delaunay interpolation as employed in Brumm and Grill (2014).
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A more straightforward extension of our approach is to use the GLO to maximize

expected utility by simultaneously determining optimal decisions along all possible

sequences of future random outcome paths. Conceptually speaking, this expanded

program is fundamentally identical to the one that we’ve solved. However, it is clearly

a far higher-dimensional problem. To maintain tractability, we consider wage-rate

uncertainty, but limit the number of periods in which wage-rate shocks can occur.

Our example nicely illustrates both the potential and limitations of the GLO when

it comes to stochastic settings.

We assume life-cycle risk in the following form: every ten years, the household’s

wage-rate either increases or decreases by 25% with equal probability, as illustrated

in the north-east corner of figure 16. For illustrative purposes we choose the initial

wage rate so that the optimal solution covers all main characteristics of labor-supply

responses to the tax code that we have discussed in section 5. The highlighted best

(yellow) and worst (blue) paths in figure 16 are most interesting. First, the FICA

threshold induces our household to flip if its wage rate increases at 35 and 45. Second,

the basic income notch results in flipping in case the household’s wage rate declines

at 35 and 45. Third, that same notch generates bunching in case the household’s

wage rate falls further at 55.

The GLO performs without difficulty despite the added complexity. But its so-

lution requires minutes instead of seconds, as the dimensionality of the problem in-

creases from 100 in the deterministic case to 460 – labor supply and consumption

choices across all contingencies. While the GLO in its current implementation is

able to solve problems where shocks occur in up to ten periods, it is clear that solv-

ing life-cycle problems where shocks occur on a yearly frequency requires far greater

computation capacity than appears to currently exist.
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Figure 16: Life-Cycle Profiles under Risk
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Note: Life-cycle and wage rate profiles for a household with an initial wage rate of $80,000. Random
shocks to the wage rate occur every 10 years, resulting in either a 25% increase or decrease. The
best (yellow) and worst (blue) scenario are highlighted.

7 Conclusion

This paper develops the Global Life-Cycle Optimizer to study the impacts typical ele-

ments of fiscal policy can have on work and saving decisions. The GLO is a stochastic

pattern-search algorithm specifically designed to determine optimal economic behav-

ior in the context of non-differentiable, non-convex, and discontinuous (NND) choice

sets. To demonstrate the GLO’s potential, we consider a simplified U.S. fiscal system

comprising three elements – the federal personal income-tax brackets, the Social Secu-

rity payroll tax with its taxable earnings ceiling, and the provision of basic income to

workers earning below a threshold. This tax system comprises eight differently-sized

kinks (seven convex and one concave) and one notch.

The GLO readily reproduces the anomalous behavior that theory predicts and

data record – the bunching of earnings just below benefit-eligibility or higher marginal-

tax thresholds. But it also produces flipping – switching in different years between

over-time work (high labor supply) and part-time work (low labor supply). Of most

surprise is the wide range of wages over which labor supply is dramatically altered.
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This is particularly true for low-wage workers, some of whom reduce their labor supply

by more than 50 percent in the course of bunching their wages.

As we show, the GLO can handle total income taxation, discrete choice, joint

taxation of married couple’s labor supplies, Social Security benefit-formula related

work disincentives, and limited wage-rate uncertainty. Furthermore, the GLO can,

it appears, simultaneously handle cash-flow constraints, fixed costs of working, min-

imum and maximum hours restrictions, labor supply adjustment costs, and benefit-

program participation costs.23 Inclusion of labor adjustment costs would surely limit

the amount of flipping.24 Agents who would otherwise flip absent adjustment costs

would likely choose to work full time for part of their work span and part time for

the remainder. This would manifest as early retirement.

The GLO also seems ideal for evaluating tax reforms. With a large and extensive

data set and careful delineation of prevailing fiscal policies, one can compare GLO’s

results under current policy with those under proposed alternative policies. Although

the GLO’s capacities to handle the full US fiscal system remain to be seen, preliminary

work with The Fiscal Analyzer, which encompasses the entire potpourri of U.S. federal

and state policy (see Auerbach et al., 2023), suggests no difficulties. Intuitively,

altering GLO’s annual net tax function changes nothing fundamental.

A final point. One might reasonably ask whether individual households can make

the calculations being modeled and processed by GLO. Complex fiscal provisions are,

after all, a postwar phenomenon, not problems human brains have evolved to solve.

Our response is twofold. First, observed earnings bunching shows that households

can comprehend and appropriately respond to at least some forms of fiscal non-

linearities. Second, over time, computational algorithms, like the GLO, will surely

assist households in making optimal life-cycle labor supply and saving decisions.

23Moffitt (1983), Fraker and Moffitt (1988), and Moffitt (1992) incorporate decisions over plan
participation.

24Adjustment costs may reflect search time needed to find jobs that permit desired hours of work.
They can also reflect loss of firm-specific human capital, reduced accumulation of human capital,
and depreciation of human capital.
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APPENDIX

A Consumption Equivalent Variation

Denote lifetime utility by

W (c, l) =
T∑
t=1

βt−1U(ct, lt), with β =

(
1

1 + ρ

)
. (7)

Let (c0, l0) and (c1, l1) be consumption and labor supply under the considered tax

system and under lump-sum taxation, respectively. Then the consumption equivalent

variation (CEV) is defined by the following equality:

W (c0(1 + CEV ), l0) = W (c1, l1).

For the left-hand side we get:

W (c0(1 + CEV ), l0) =
T∑
t=1

βt−1U(c0t (1 + CEV ), l0t )

=
T∑
t=1

βt−1

(
log[c0t (1 + CEV )]− χ

(l0t )
1+1/γ

1 + 1/γ

)

=
T∑
t=1

βt−1

(
log(c0t ) + log(1 + CEV )− χ

(l0t )
1+1/γ

1 + 1/γ

)

=
T∑
t=1

βt−1

(
log(c0t )− χ

(l0t )
1+1/γ

1 + 1/γ

)
+

T∑
t=1

βt−1 log(1 + CEV )

= W (c0, l0) +
T∑
t=1

βt−1 log(1 + CEV ).
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Combining the above equations results in:

W (c0(1 + CEV ), l0) = W (c1, l1)

⇔ W (c0, l0) +
T∑
t=1

βt−1 log(1 + CEV ) = W (c1, l1)

⇔
T∑
t=1

βt−1 log(1 + CEV ) = W (c1, l1)−W (c0, l0)

⇔ CEV = exp

(
W (c1, l1)−W (c0, l0)∑T

t=1 β
t−1

)
− 1.

B GLO Algorithm

This appendix provides a formal description of the working of GLO for a single

starting guess. We avoid the outer loop for multiple starting guesses to simplify

notation and as its implementation is trivial: a final step simply chooses the solution

with the highest objective value among all solutions resulting from different starting

guesses. For the above results, we ran the GLO with the following parameter values:

m0 = 1, J = 500, bl = 0, bu = 1.25, ε = 10−8.

1. Initialization: Set stopping criterion ε > 0, initial mesh size m0 > ε, and

adjustment interval [bl, bu]. Set initial path for consumption and gross labor

income of size N = T +R,25

x0 = {c1, . . . , cT , y1, . . . , yR}.

Note that, for a given x, implied consumption is ct = xt, labor supply is lt =

xT+t/wt, and asset holdings are at+1 = wtlt + (1 + rt)at − T (wtlt) − ct for

t = 1, . . . , T . Specify the objective function W (with slight abuse of notation

using gross labor income instead of labor supply as input) as follows:

W (x) =
T∑
t=1

(
1

1 + ρt

)t−1

U

(
xt,

xT+t

wt

)
.

25We mostly use the following guess. A random labor supply fixed over working life, and con-
sumption before (in) retirement as a random fixed fraction of labor income (in the last period before
retirement), thus x0 = {c̃w1 l̃, . . . , c̃wR l̃, . . . , c̃wR l̃, w1 l̃, . . . , wR l̃}, with c̃ ∼ U(0, 1), l̃ ∼ U(0, 1.5).
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2. Construction of poll set: Given the current point xk and mesh size mk, the

poll set contains J points of dimension N ,

P = {p1, . . . , pJ}.

To generate pj, j = 1, . . . , J , execute the following steps:

(a) Draw two distinct random integers i1, i2 ∈ {1, . . . , N} and one uniformly

distributed random real number z ∈ [bl, bu].

(b) Compute four different candidates p̃j,1, . . . , p̃j,4 that are identical to xk

except for entries i1 and i2. In particular, set p̃j,1 = · · · = p̃j,4 = xk and

add and subtract mk to i1, and z ·mk to i2:

p̃j,1(i1) = xk(i1) +mk, p̃j,1(i2) = xk(i2) + z ·mk

p̃j,2(i1) = xk(i1) +mk, p̃j,2(i2) = xk(i2)− z ·mk

p̃j,3(i1) = xk(i1)−mk, p̃j,3(i2) = xk(i2) + z ·mk

p̃j,4(i1) = xk(i1)−mk, p̃j,4(i2) = xk(i2)− z ·mk

(c) For each x = p̃j,1, . . . , p̃j,4 and for t = 1, . . . , T , compute implied at+1.

If t < T and at+1 < 0 or t = T , set xt = xt + at+1, ensuring that the

borrowing constraint is just satisfied (for t < T ) or all assets are consumed

(for t = T ).

(d) Choose pj to be the candidate with the highest objective value:

pj = argmax
{p̃j,1,...,p̃j,4}

W (p).

3. Evaluation of poll set: Pick the pi with the highest objective value:

p∗ = argmax
P

W (p).

If W (p∗) > W (xk), then the poll is successful: set xk+1 = p∗ and mk+1 = mk ·2.
If W (p∗) ≤ W (xk), the poll was unsuccessful: set xk+1 = xk and mk+1 = mk/2.

4. Convergence: If mk < ε, stop and return xk+1 as solution; otherwise, go to

step 2.

39



C Global Optimization of Standard Test Functions

We follow Arnoud et al. (2019) and use standard test functions for global optimizers

to benchmark the performance of GLO. In particular, we use the following three test

functions:

• Levi function No. 13:

f(x) = sin2(3πx1)+(xn−1)2[1+sin2(2πxn)]+
n−1∑
i=1

(xi−1)2[1+sin2(3πxi+1)]+1,

(8)

with x ∈ [−10, 10]n, which has its global minimum at x = (1, . . . , 1) with

function value f(1, . . . , 1) = 1.

• Rastrigin function:

f(x) = An+
n∑

i=1

[x2
i − A cos(2πxi)] + 1, (9)

with A = 10 and x ∈ [−5.12, 5.12]n, which has its global minimum at x =

(0, . . . , 0) with function value f(0, . . . , 0) = 1.

• Griewank function:

f(x) =
n∑

i=1

x2
i

a
−

n∏
i=1

cos

(
xi√
i

)
+ 2, (10)

with a = 200 and x ∈ [−100, 100]n, which has its global minimum at x =

(0, . . . , 0) with function value f(0, . . . , 0) = 1.

Besides the change of objective function, we only make two obvious and two ad-

ditional minor adjustments to the GLO. Clearly, we are now minimizing instead of

maximizing and step 2 (c) is obsolete as we are now solving unconstrained optimiza-

tion problems. Moreover, we choose J = 2000, i.e., we increase the size of the poll

set in each iteration. This choice guarantees a success rate of at least 50% in all cases

of the test functions as reported below. Finally, we set ε = 10−6. This choice does

not affect the success rate, as GLO either finds the global minimum or gets stuck in

a local one, but it lowers the compute time to some degree.
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Figure 17 displays the performance of the GLO on the three considered test func-

tions of varying dimensionality. The left panel displays the compute time for 100

GLO runs, which turns out to grow much less than exponentially (concave shape

with logarithmic time scale). The GLO can swiftly solve all three test functions in up

to 100 dimensions.26 It does so at a remarkable success rate of more than 50% across

all test functions and dimensions considered, as the right panel of figure 17 shows

the success rates of GLO to find the respective global minimum. We define a trial

as successful if the absolute distance between the objective function value found by

GLO and the global optimum is less than 10−6. While GLO finds the global optimum

for the Levi No. 13 function in all trials, the success rate is increasing in the number

of dimensions for the Griewank function and decreasing for the Rastrigin function.

Note that these success rates of the GLO for single starting values translate to very

high success rates for the GLO with multiple starting guesses. Even in the worst case,

the 100-dimensional Rastrigin function, an implementation with 10 starting guesses

has a success rate above 99.9%.

Figure 17: GLO’s Performance on Standard Test Functions
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Note: The left panel displays the average compute time (in seconds) for a single run of the GLO
when solving the respective test functions. The right panel shows the success probability of the GLO
for a single starting guess in finding the analytically known global minima of these test functions.
With 10 starting guesses, success rates are above 99.9% for all considered specifications.

26Note that Arnoud et al. (2019) reports results for up to ten dimensional problems only. Note
also that that paper uses a fourth test function, the Rosenbrock function. As the GLO can only
solve that function for up to about 12 dimensions, we do not include the results here.
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D GLO versus Value Function Iteration

This appendix first describes the discrete value function iteration algorithm that we

used to verify the GLO’s solutions and to compare its performance. It then provides

details of the hardware infrastructure used to run both the GLO and VFI.

We solve the NND life-cycle problem by VFI using beginning-of-period-assets

(1 + rt)at as state variable and discretizing the choices labor supply, lt, and assets,

at+1. The algorithm automatically generates a grid of possible asset choices depending

on the wage rate,27 while for labor supply the lower and upper bounds are always

set to 0 and 1.5. Overall, we work with 6,001 possible asset choices and 601 possible

labor supply choices, representing a grid size of about 3,600,000 points. At a given

age t and for each point on the asset grid, we identify the optimal choices given the

t+1-period value function, thereby generating the t-period value function. Finally, we

obtain the VFI-solution of the NND life-cycle problem by reconstructing the optimal

paths of labor supply, consumption, and assets from the obtained grids of optimal

choices, starting from t = 0 and a0 = 0.

To accelerate the algorithm, we made adjustments that limit the number of pos-

sible choices at each step to a realistic subset, thereby avoiding unnecessary compu-

tations. Specifically, we do not consider all possible asset choices from zero to the

upper bound, but only those within a range of plus/minus the current wage rate

from given starting assets, making necessary adjustments if this would include points

off the grid. Furthermore, we distribute the task of finding the optimal choices for

different starting assets in a given period t across different cores.

We ran our programs on bwUniCluster 2.0. In each case, we utilized a single

node of the cluster consisting of two sockets, each equipped with an Intel Xeon Gold

6230 processor with 40 cores and a frequency of 2.1 GHz, without any integrated

accelerators. In terms of memory, we simply used the cluster’s default setting of

1,125MB per CPU. To exploit these multiple cores, we used the multiprocessing

package from the Python Standard Library. This allowed us to simultaneously run

the GLO with different wage rates or different starting guesses, and to parallelize the

search for the optimal points on the asset and labor supply grid when running VFI.

27We set the upper bound to 15 times the wage rate with special rules for very low wage rates to
account for the effects of the basic income. Using $0 as the lower bound, the grid is then constructed
with a step size of 0.25% of the chosen wage rate.

42



Declaration of Generative AI and AI-assisted Technologies

in the Manuscript Preparation Process

During the preparation of this work the authors used refine in order to identify

inconsistencies in notation, argumentation, and referencing. After using this tool, the

authors reviewed and edited the content as needed and take full responsibility for the

content of the published article.

43



References

Arnoud, A., Guvenen, F., and Kleineberg, T. (2019). Benchmarking global optimizers.

NBER Working Paper 26340.

Audet, C. and Dennis, J. (2003). Analysis of generalized pattern searches. SIAM

Journal on Optimization, 13(3):889–903.

Auerbach, A. J. (1985). The theory of excess burden and optimal taxation. In Auer-

bach, A. J. and Feldstein, M., editors, Handbook of Public Economics, volume 1,

pages 61–127. Elsevier.

Auerbach, A. J. and Hines, J. R. (2002). Taxation and economic efficiency. In Auer-

bach, A. J. and Feldstein, M., editors, Handbook of Public Economics, volume 3,

pages 1347–1421. Elsevier.

Auerbach, A. J., Kotlikoff, L. J., and Koehler, D. (2023). U.S. inequality and fis-

cal progressivity: An intragenerational accounting. Journal of Political Economy,

131(5):1249–1293.

Azinovic, M., Gaegauf, L., and Scheidegger, S. (2022). Deep equilibrium nets. Inter-

national Economic Review, 63(4):1471–1525.

Bastani, S. and Selin, H. (2014). Bunching and non-bunching at kink points of the

swedish tax schedule. Journal of Public Economics, 109:36–49.

Bertanha, M., McCallum, A. H., and Seegert, N. (2023). Better bunching, nicer

notching. Journal of Econometrics, 237(2):105512.

Bick, A. and Fuchs-Schündeln, N. (2018). Taxation and labour supply of married

couples across countries: A macroeconomic analysis. The Review of Economic

Studies, 85(3):1543–1576.

Blomquist, S., Newey, W. K., Kumar, A., and Liang, C.-Y. (2021). On bunching

and identification of the taxable income elasticity. Journal of Political Economy,

129(8):2320–2343.

Blundell, R. and Hoynes, H. W. (2004). Has’ in-work’benefit reform helped the

labor market? In Seeking a Premier Economy: The Economic Effects of British

Economic Reforms, 1980-2000, pages 411–460. University of Chicago Press.

Blundell, R. and MaCurdy, T. (1999). Labor supply: A review of alternative ap-

proaches. In Ashenfelter, O. C. and Card, D., editors, Handbook of Labor Eco-

nomics, volume 3, pages 1559–1695. Elsevier.

44



Blundell, R. and Shephard, A. (2012). Employment, hours of work and the optimal

taxation of low-income families. The Review of Economic Studies, 79(2):481–510.

Brown, K. M. (2013). The link between pensions and retirement timing: Lessons

from California teachers. Journal of Public Economics, 98:1–14.

Brumm, J. and Grill, M. (2014). Computing equilibria in dynamic models with occa-

sionally binding constraints. Journal of Economic Dynamics and Control, 38:142–

160.

Brumm, J. and Scheidegger, S. (2017). Using adaptive sparse grids to solve high-

dimensional dynamic models. Econometrica, 85(5):1575–1612.

Burtless, G. (1976). Taxes, transfers and preferences for work among black married

men. Mimeographed. Cambridge, Mass.: Massachusetts Inst. Tech.

Cai, Y. and Judd, K. L. (2023). A simple but powerful simulated certainty equivalent

approximation method for dynamic stochastic problems. Quantitative Economics,

14(2):651–687.

Carroll, C. D. (2006). The method of endogenous gridpoints for solving dynamic

stochastic optimization problems. Economics letters, 91(3):312–320.

Chetty, R., Friedman, J. N., Olsen, T., and Pistaferri, L. (2011a). Adjustment costs,

firm responses, and micro vs. macro labor supply elasticities: Evidence from danish

tax records. The Quarterly Journal of Economics, 126(2):749–804.

Chetty, R., Guren, A., Manoli, D., and Weber, A. (2011b). Are micro and macro labor

supply elasticities consistent? a review of evidence on the intensive and extensive

margins. American Economic Review, 101(3):471–475.

Danzinger, S. and Plotnick, R. (1981). Chapter 6: Income maintenance programs

and the pursuit of income security. The ANNALS of the American Academy of

Political and Social Science, 453(1):130–152.

Duarte, V., Fonseca, J., Goodman, A. S., and Parker, J. A. (2021). Simple allocation

rules and optimal portfolio choice over the lifecycle. NBER Working Paper 29559.
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