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In this paper, we prove the existence of recursive equilibria in a dynamic stochas-
tic model with infinitely lived heterogeneous agents, several commodities, and general
inter- and intratemporal production. We illustrate the usefulness of our result by pro-
viding sufficient conditions for the existence of recursive equilibria in heterogeneous
agent versions of both the Lucas asset pricing model and the neoclassical stochastic
growth model.
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1. INTRODUCTION

THE USE OF SO-CALLED RECURSIVE EQUILIBRIA to analyze dynamic stochastic general
equilibrium models has become increasingly important in financial economics, in macroe-
conomics, and in public finance. These equilibria are characterized by a pair of functions:
a transition function mapping this period’s “state” into probability distributions over next
period’s state, and a “policy function” mapping the current state into current prices and
choices (see, e.g., Ljungquist and Sargent (2004) for an introduction). In applications that
consider dynamic stochastic economies with heterogeneous agents and production, it is
typically the current exogenous shock together with the capital stock and the beginning-
of-period distribution of assets across individuals that define this recursive state. We will
refer to recursive equilibria with this minimal “natural” state space simply as recursive
equilibria, or—following the terminology of stochastic games—as (stationary) Markov
equilibria. Unfortunately, for models with infinitely lived agents and incomplete finan-
cial markets, no sufficient conditions for the existence of these Markov equilibria can be
found in the existing literature. In this paper, we close this gap in the literature and prove
the existence of recursive equilibria for a general class of stochastic dynamic economies
with heterogeneous agents and production. To do so, we assume that there are two atom-
less shocks that are stochastically independent (conditional on a possible third shock that
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can be arbitrary). The first shock is purely transitory and only affects fundamentals that
influence the endogenous state, while the second does not affect these fundamentals. We
illustrate the usefulness of our results by providing sufficient conditions for the existence
of recursive equilibria in heterogeneous agent versions of both the Lucas asset pricing
model and the neoclassical stochastic growth model.

There are a variety of reasons for focusing on stationary Markov equilibria. Most
importantly, recursive methods can be used to approximate stationary Markov equilib-
ria numerically. Heaton and Lucas (1996), Krusell and Smith (1998), and Kubler and
Schmedders (2003) are early examples of papers that approximate stationary Markov
equilibria in models with infinitely lived, heterogeneous agents. Although an existence
theorem for stationary Markov equilibria has not been available, applied research—even
if explicitly aware of the problem—needs to focus on such equilibria, as there are no
efficient algorithms for the computation of non-recursive equilibria.1 For the case of dy-
namic games, Maskin and Tirole (2001) listed several conceptual arguments in favor of
stationary Markov equilibria. Duffie, Geanakoplos, Mas-Colell, and McLennan (1994)
gave similar arguments that also apply to dynamic general equilibrium models: As prices
vary across date events in a dynamic stochastic market economy, it is important that the
price process is simple—for instance, Markovian on some minimal state space—to justify
the assumption that agents have rational expectations.

Unfortunately, due to the non-uniqueness of continuation equilibria, stationary Markov
equilibria do not always exist. This problem was first illustrated by Hellwig (1983) and
since then has been demonstrated in different contexts. Kubler and Schmedders (2002)
gave an example showing the nonexistence of stationary Markov equilibria in models
with incomplete asset markets and infinitely lived agents. Santos (2002) provided exam-
ples of nonexistence for economies with externalities. Kubler and Polemarchakis (2004)
presented such examples for overlapping generations (OLG) models, one of which we
modify to fit our framework with infinitely lived agents and production, thereby demon-
strating the possibility of nonexistence and motivating our analysis.

The existence of competitive equilibria for general Markovian exchange economies was
shown in Duffie et al. (1994). These authors also proved that the equilibrium process is
a stationary Markov process. However, we follow the well-established terminology in dy-
namic games and do not refer to these equilibria as stationary Markov equilibria, because
the state also contains consumption choices and prices from the previous period.

Citanna and Siconolfi (2010, 2012) provided sufficient conditions for the generic exis-
tence of stationary Markov equilibria in OLG models. However, their arguments cannot
be extended to models with infinitely lived agents or to models with occasionally binding
constraints on agents’ choices, and for their argument to work in their OLG framework
they needed to assume a very large number of heterogeneous agents within each genera-
tion.

Duggan (2012) and He and Sun (2017) gave sufficient conditions for the existence of
stationary Markov equilibria in stochastic games with uncountable state spaces. Building
on work by Nowak and Raghavan (1992), He and Sun (2017) used a result from Dynkin
and Evstigneev (1977) to provide sufficient conditions for the convexity of the conditional
expectation operator. They showed that the assumption of a public coordination device
(“sunspot”) in Nowak and Raghavan (1992) can be generalized to natural assumptions
on the exogenous shock to fundamentals.

1While Feng, Miao, Peralta-Alva, and Santos (2014) provided an algorithm for this case, their method can
only be used for very small-scale models.
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To show the existence of a recursive equilibrium, we characterize it by a function that
maps the recursive state into the marginal utilities of all agents. Our first proposition
shows that such a function describes a recursive equilibrium if it is a fixed point of an
operator that captures the period-to-period equilibrium conditions. Using this character-
ization, we proceed in two steps to prove the existence of a recursive equilibrium. First,
we make direct assumptions on the function that maps the current recursive state and
current actions into the probability distribution of next period’s recursive state. Assuming
that this function varies continuously with current actions (a “norm-continuous” transi-
tion), the operator defined by the equilibrium conditions is a non-empty correspondence
on the space of marginal utility functions. Unfortunately, the Fan–Glicksberg fixed-point
theorem only guarantees the existence of a fixed point in the convex hull of this correspon-
dence. However, following He and Sun (2017), we give conditions that ensure that this is
also a fixed point of the original correspondence. For this, we assume that the density of
the transition probability is measurable with respect to a sigma algebra that is sufficiently
coarse relative to the sigma algebra representing the total information available to agents.
This establishes Proposition 2, which provides a first set of sufficient conditions for the ex-
istence of recursive equilibria. In a second step, we provide concrete assumptions on the
stochastic process of exogenous shocks; assumptions that guarantee that the conditions of
Proposition 2 are indeed satisfied. In particular, we assume that the shock process driving
fundamentals contains, in addition to a possible main component that is not subject to spe-
cific assumptions, two components that both have an atomless distribution—the transition
component and the noise component. The transition component is purely transitory and
only affects fundamentals that influence the endogenous state. The noise component, in
contrast, does not affect these fundamentals and is, conditional on the main component,
independent of the transition component and of the previous period’s shocks. Theorem 1
states that under these assumptions, a recursive equilibrium exists.

We apply our result to two concrete models used frequently in macroeconomics and
finance. We first prove the existence of a recursive equilibrium for a heterogeneous agent
version of the Lucas (1978) asset pricing model with displacement risk. Second, we prove
existence in a version of the Brock and Mirman (1972) stochastic growth model with
inelastic labor supply and heterogeneous agents.

We present our main result and our two applications for models without short-lived
financial assets—this makes the argument simpler and highlights the economic assump-
tions necessary for our existence result. As an extension, we introduce financial securities
together with collateral constraints. In order to define a compact endogenous state space,
we need to make relatively strong assumptions on endowments and preferences, and to
impose constraints on trades. It is subject to further investigation whether these assump-
tions can be relaxed. While it is well understood that without occasionally binding con-
straints on trade the existence of a recursive equilibrium cannot be established (see, e.g.,
Krebs (2004)), the assumptions made in this paper are certainly stronger than needed.

In a stationary Markov equilibrium, the relevant state space consists of both endoge-
nous and exogenous variables that are payoff-relevant,2 predetermined, and sufficient for
the optimization of individuals at every date event. There are several computational ap-
proaches that use individuals’ “Negishi weights” as an endogenous state instead of the
distribution of assets (see, e.g., Dumas and Lyasoff (2012) or Brumm and Kubler (2014)).
Brumm and Kubler (2014) proved existence in a model with overlapping generations,
complete financial markets, and borrowing constraints, but the approach does not extend

2Maskin and Tirole (2001) gave a formal definition of payoff-relevant states for Markov equilibria in games.
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to models with incomplete markets. In this paper, we focus on equilibria that are recursive
on the “natural” state space—that is to say, the space consisting of the exogenous shock
and the asset holdings of all agents.

The rest of the paper is organized as follows: Section 2 presents the general model
and gives an example in which no recursive equilibrium exists. Section 3 provides our
existence theorem. Section 4 presents two applications. Detailed proofs can be found in
the Appendix.

2. A GENERAL DYNAMIC MARKOVIAN ECONOMY

In this section, we describe the economic model and define recursive equilibrium. While
we consider an abstract and general model of a production economy, there are two special
cases of the model that play an important role in practice. In the first, a heterogeneous
agent version of the Lucas (1978) asset pricing model, agents trade in several long-lived
assets that are in unit net supply and pay exogenous positive dividends in terms of the sin-
gle consumption good. In the second, a version of the Brock–Mirman stochastic growth
model with heterogeneous agents, there is a single capital good that can be used in in-
traperiod production, together with labor, to produce the single consumption good. This
good can be consumed or stored in a linear technology yielding one unit of the capital
good in the subsequent period. We show in Section 4 how our general existence proof can
be used to provide sufficient conditions for existence of recursive equilibria in versions of
these two models.

2.1. The Model

Time is indexed by t ∈ N0. Exogenous shocks zt realize in a complete, separable metric
space Z, and follow a first-order Markov process with transition probability P(·|z) defined
on the Borel σ-algebra Z on Z—that is, P : Z × Z → [0�1]. Let (zt)∞

t=0, or in short (zt),
denote this stochastic process and let (Ft) denote its natural filtration (i.e., the smallest
filtration such that (zt) is Ft-adapted). A history of shocks up to some date t is denoted by
zt = (z0� z1� � � � � zt) and called a date event. Whenever convenient, we simply use t instead
of zt .

We consider a production economy with infinitely lived agents. There are H types of
agents, h ∈ H = {1� � � � �H}. At each date event, there are L perishable commodities,
l ∈ L = {1� � � � �L}, available for consumption and production. The individual endowments
are denoted by ωh(z

t) ∈ RL
+ and we assume that they are time-invariant and measur-

able functions of the current shock. We take the consumption space to be the space of
Ft-adapted and essentially bounded processes. Each agent h has a time-separable ex-
pected utility function

Uh

(
(xh�t)

∞
t=0

) = E0

[ ∞∑
t=0

δtuh(zt� xh�t)

]
�

where δ ∈ R is the discount factor, xh�t ∈ RL
+ denotes the agent’s (stochastic) consumption

at date t, and (xh�t)
∞
t=0 denotes the agent’s entire consumption process.

It is useful to distinguish between intertemporal and intraperiod production. Intrape-
riod production is characterized by a measurable correspondence Y : Z ⇒ RL, where a
production plan y ∈ RL is feasible at shock z if y ∈ Y(z). For simplicity (and without loss
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of generality), we assume throughout that each Y(z) exhibits constant returns to scale so
that ownership does not need to be specified.

Intertemporally, each type h = 1� � � � �H has access to J linear storage technologies,
j ∈ J = {1� � � � � J}. At a node z, each technology (h� j) is described by a column vector
of inputs a0

hj(z) ∈ RL
+, and a vector-valued random variable of outputs in the subsequent

period, a1
hj(z

′) ∈ RL
+, z′ ∈ Z. We write A0

h(z) = (a0
h1(z)� � � � � a

0
hJ(z)) for the L × J matrix

of inputs and A1
h(z

′) = (a1
h1(z

′)� � � � � a1
hJ(z

′)) for the L × J matrix of outputs. We denote
by αh(z

t) = (αh1(z
t)� � � � �αhJ(z

t))� ∈ RJ
+ the levels at which the linear technologies are

operated at node zt by agent h.
Each period, there are complete spot markets for the L commodities; we denote prices

by p(zt) = (p1(z
t)� � � � �pL(z

t)), a row vector. For what follows, it will be useful to define
the set of stored commodities (or “capital goods”) to be

LK =
{
l ∈ L :

∑
h∈H

∑
j∈J

a1
hjl(z) > 0 for some z ∈ Z

}
�

and to define KU = {x ∈ RHL
+ : xhl = 0 whenever l /∈ LK�h ∈ H}. We decompose individual

endowments into capital goods, fh, and consumption goods, eh, and define

fhl(z)=
{
ωhl(z) if l ∈ LK�

0 otherwise,

and eh(z) = ωh(z) − fh(z). At t = 0, agents have some initial endowment in the capital
goods that might be larger than fh(z0), and to simplify notation we write the difference as
A1

h(z0)αh(z
−1) for each agent h.

Given initial conditions (fh(z0)+A1
h(z0)αh(z

−1))h∈H ∈ KU , we define a sequential com-
petitive equilibrium to be a process of Ft-adapted prices and choices,(

p̄t� (x̄h�t� ᾱh�t)h∈H� ȳt
)∞
t=0

�

such that markets clear and agents optimize—that is to say, the following (A), (B), and
(C) hold.

(A) Market clearing:∑
h∈H

(
x̄h

(
zt

) +A0
h(zt)ᾱh

(
zt

) −ωh(zt)−A1
h(zt)ᾱh

(
zt−1

)) = ȳ
(
zt

)
� for all zt�

(B) Profit maximization:

ȳ
(
zt

) ∈ arg max
y∈Y(zt )

p̄
(
zt

) · y�

(C) Each agent h ∈ H maximizes utility:

(x̄h�t� ᾱh�t)
∞
t=0 ∈ arg max

(xh�t �αh�t )
∞
t=0≥0

Uh

(
(xh�t)

∞
t=0

)
s.t. p̄

(
zt

) · (xh

(
zt

) +A0
h(zt)αh

(
zt

) −ωh(zt)−A1
h(zt)αh

(
zt−1

)) ≤ 0� for all zt�
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2.2. Recursive Equilibrium

We take as an endogenous state variable the beginning-of-period holdings in capital
goods, obtained from storage and as endowments. We fix an endogenous state space K ⊂
KU and take S = Z×K. A recursive equilibrium consists of “policy” and “pricing” functions

Fα : S →RHJ
+ � Fx : S → RHL

+ � Fp : S → �L−1

such that for all initial shocks z0 ∈ Z, and all initial conditions (A1
h(z0)αh(z

−1) +
fh(z0))h∈H ∈ K, there exists a competitive equilibrium(

p̄t� (x̄h�t� ᾱh�t)h∈H� ȳt
)∞
t=0

such that for all zt ,

s
(
zt

) = (
zt�

(
A1

h(zt)ᾱh

(
zt−1

) + fh(zt)
)
h∈H

) ∈ Z × K

and p̄(zt)= Fp(s(z
t)), x̄(zt)= Fx(s(z

t)), ᾱ(zt)= Fα(s(z
t)).

For computational convenience, one typically wants K to be convex; this will be guaran-
teed in our existence proof below, but for now we do not include the requirement in the
definition of recursive equilibrium. Note also that we chose the endogenous state space
K to be a subset of KU , where KU represents the holding of broadly defined capital goods
LK . At the cost of notational inconvenience, one could define capital goods and the space
of capital holdings agent-wise by

LK
h =

{
l ∈ L :

∑
j∈J

a1
hjl(z) > 0

}
� KU

h = {
x ∈RHL

+ : xl = 0 whenever l /∈ LK
h

}
�

The endogenous state space would then satisfy K ⊂×h∈H KU
h , which could be consider-

ably smaller than in the above definition, depending on the application. Similarly, one
could make the space of capital holdings depend on the shock z ∈ Z.

2.3. Possible Nonexistence

Before we turn to our existence proof in Section 3, we now provide an example that
illustrates why recursive equilibria may fail to exist. The example is inspired by Kubler
and Polemarchakis (2004) and has the advantage that it can be analyzed analytically and
all calculations are extremely simple.3 In this example, agents make the same storage
decisions in two different exogenous states. Yet these decisions are only consistent with
intertemporal optimization because expectations about the next period’s prices differ.
Therefore, equilibrium prices are not only a function of capital holdings, but also of the
previous period’s exogenous state. Thus, an equilibrium that is recursive in the natural
state does not exist.

The details of the example are as follows. We assume that there are only three pos-
sible shock realizations, z′ ∈ {1�2�3}, which are independent of the current shock and
equiprobable, thus π(z′|z) = 1/3 for all z� z′ ∈ {1�2�3}. There are two commodities and

3Kubler and Polemarchakis (2004) provided a second example where preferences and endowments are more
standard, but we would need tools from computational algebraic geometry to analyze it and the basic point can
be illustrated well in the simpler setup.



RECURSIVE EQUILIBRIA IN DYNAMIC ECONOMIES 1473

two types of agent. As in Section 2.1, we assume that each agent maximizes time-separable
expected utility, and to make computations simple we assume δ= 1/2. Each agent has ac-
cess to one storage technology.4 Agent 1’s technology transforms one unit of commodity
1 at given shocks z = 1 and z = 2 to one unit of commodity 1 in the subsequent period
whenever shock 3 occurs. Agent 2’s technology transforms one unit of commodity 2 at
given shocks z = 1 and z = 2 to one unit of commodity 2 in the subsequent period when-
ever shock 3 occurs. At shock z = 3, no storage technology is available.5 All in all, we
have

a0
1(1) = a0

1(2)= (1�0)� a0
1(3)= ∞� a0

2(1)= a0
2(2)= (0�1)� a0

2(3)= ∞�

a1
1(1) = a1

1(2)= 0� a1
1(3)= (1�0)� a1

2(1)= a1
2(2)= 0� a1

2(3)= (0�1)�

We assume that the Bernoulli utility functions of agents 1 and 2 are as follows:

u1

(
z = 1� (x1�x2)

) = u1(z = 2�x)= − 1
6x1

� u1(z = 3�x)= − 1
x1

+ x2�

u2

(
z = 1� (x1�x2)

) = u2(z = 2�x)= − 1
6x2

� u2(z = 3�x)= x1 − 1
x2

�

Endowments of agents of type 1 are

ω1(z = 1)= (
ω11(1)�ω12(1)

) = (2�0)� ω1(z = 2)= (0�1�0)� ω1(z = 3)= (0�2)�

and endowments of agents of type 2 are

ω2(z = 1)= (0�0�1)� ω2(z = 2)= (0�2)� ω2(z = 3)= (2�0)�

For simplicity, we set up the example completely symmetrically. In shocks 1 and 2, agent 1
only derives utility from consumption of good 1 and is only endowed with good 1, agent 2
only derives utility from good 2 and is only endowed with this good.

It is easy to see that at shocks 1 and 2, there will never be any trade. By assumption,
if shock 3 occurs, there cannot be any storage. Therefore, the economy decomposes into
one-period and two-period “sub-economies.” The only nontrivial case is when shock 3 is
preceded by either shock 1 or 2. In these two-period economies, agents make a savings
decision in the first period and interact in spot markets in the second period.

To analyze the equilibria in these two-period economies, it is useful to compute the
individual demands in the second period in shock 3 as functions of the price ratio p̃ =
p2(z

′=3)
p1(z

′=3) given amounts of commodity 1 obtained by agent 1’s storage, κ1, and amounts of
commodity 2 obtained by agent 2’s storage, κ2. We obtain for agent 1,

x1(p̃|κ)=

⎧⎪⎨⎪⎩
(
p̃ω12(3)+ κ1�0

)
for p̃ω12(3)− √

p̃+ κ1 ≤ 0�(√
p̃�ω12(3)− 1√

p̃
+ κ1

p̃

)
otherwise�

4To simplify notation, we assume that each agent has his or her own technology, but given our assumptions
on endowments, below, it would be equivalent to assume that each agent has access to both technologies.

5The assumption is made for convenience—all one needs is productivity low enough to guarantee that the
technology is not used. In a slight abuse of notation, we write a0

h(3) = ∞.
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and, symmetrically for agent 2,

x2(p̃|κ)=

⎧⎪⎪⎨⎪⎪⎩
(

0�
ω21(3)

p̃
+ κ2

)
for ω21(3)− √

p̃+ p̃κ2 ≤ 0�(
ω21(3)− √

p̃+ p̃κ2
1√
p̃

)
otherwise�

We note first that, in equilibrium, agent 2 never stores in shock 1 and agent 1 never stores
in shock 2. To see this, observe that agent 2 stores in shock 1 only if his or her consumption
in good 2 in the subsequent shock 3 is below 0�1. However, x2(p̃|κ) ≤ 0�1 and κ ≥ 0
implies ω21(3)/p̃ ≤ 0�1, thus the (relative) price of good 2, p̃, must be at least 20. But
then agent 1’s consumption of good 1 must be at least

√
20, which violates feasibility.

Therefore, there cannot be an equilibrium where agent 2 stores in shock 1. The situation
for shock 2 is completely symmetric—agent 1 will never store in this shock.

We now consider a two-period economy with the initial shock equal to 1 where agent 2
does not store—that is, κ2 = 0. If also κ1 = 0, then the equilibrium conditions for the
second-period spot market have a continuum of solutions: any p̃ satisfying ω12(3)−2 =
1/4 ≤ p̃ ≤ ω21(3)2 = 4 is a possible spot market equilibrium. However, we now show that
in the two-period economy, only p̃ = 4 is consistent with agent 1’s intertemporal opti-
mization. For p̃ = 4, agent 1’s consumption at shock 3 is given by x1(z

′ = 3) = (2�1�5).
If agent 1’s consumption in good 1 drops below 2, he or she will always store positive
amounts, and by feasibility it cannot be above 2 without storage. To see that this equilib-
rium is unique, first observe that there cannot be another equilibrium with identical con-
sumption for agent 1 in good 1. To see that there cannot be an equilibrium with κ1 > 0,
observe that, for κ1 > 0, the only possible spot equilibrium would have x11 = 2 +κ1. How-
ever, the Euler equation implies that κ1 > 0 is then inconsistent with intertemporal opti-
mality. When the economy starts in shock 2, the situation is completely symmetric, with
only one possible equilibrium with κ1 = κ2 = 0, p̃ = 1

4 , and agent 1’s consumption given
by x1(z

′ = 3)= (0�5�0).
Thus, in every competitive equilibrium we have κ1 = κ2 = 0, and consumption and

prices in shock 3 differ depending on whether the realization of the previous shock was 1
or 2. Therefore, there is no recursive equilibrium.

Clearly, the counterexample relies crucially on the fact that, given κ1 = κ2 = 0, there
are several possible continuation equilibria. As Kubler and Schmedders (2002) pointed
out, the assumption of uniqueness of competitive equilibria for all possible initial condi-
tions ensures the existence of a recursive equilibrium. However, this assumption is highly
unreasonable. For models with infinitely lived agents and incomplete financial markets,
no assumptions are known that guarantee uniqueness. Ever since Kehoe (1985), it has
been well known that, even for the static Arrow–Debreu model with production, condi-
tions that guarantee uniqueness of equilibria are too restrictive to have much applicability.
Moreover, none of these conditions extend to dynamic stochastic models with incomplete
markets. Therefore, we do not try to find conditions that rule out multiple equilibria. In-
stead, our strategy is to find conditions that ensure, in the presence of multiple equilibria,
that there is at least one equilibrium that is recursive in the natural state.

3. EXISTENCE

In this section, we prove the existence of a recursive equilibrium for the general model
presented in Section 2. Section 3.1 shows how to characterize recursive equilibrium via
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marginal utility functions. Section 3.2 proves existence, making direct assumptions on the
transition probability for the recursive state. Assumptions on the economic fundamentals
which guarantee that these conditions hold are provided in Section 3.3. In Section 3.4, we
outline how our results can be extended to allow for financial assets.

3.1. Characterizing Recursive Equilibria

We now characterize recursive equilibrium via a function that maps the recursive state
into marginal utilities of all agents. We show that such a function describes a recursive
equilibrium if it is a fixed point of an operator that captures the period-to-period equilib-
rium conditions.

Since we consider an economy with several commodities, we want to allow for the fact
that some commodities do not enter the utility functions of agents and some commodi-
ties, although their consumption provides utility, are not essential in that an agent might
decide to consume zero of that commodity. Nevertheless, we need to assume that there
is at least one commodity that is essential in the sense that, independently of prices, an
agent will always consume positive amounts of that commodity. For simplicity, we take
the consumption space to be C = R++ × RL−1

+ , assuming that utility and marginal utility
are well defined even if consumption of goods 2� � � � �L are on the boundary. It is straight-
forward to amend our proofs and to allow for additional Inada conditions for some, or
all, of the commodities 2� � � � �L. We make the following assumption on preferences and
endowments:

ASSUMPTION 1:
(1) Individual endowments in good 1 and aggregate endowments in all other goods are

bounded above and bounded below away from zero—that is, there are ω�ω ∈ R++ such
that, for all shocks z,

ω<ωh1(z) < ω for all agents h�

ω <
1
H

∑
h∈H

ωhl(z) < ω for all goods l = 2� � � � �L�

(2) The agents’ discount factor satisfies δ ∈ (0�1).
(3) The Bernoulli functions uh : Z × C → R, h ∈ H, are measurable in z, they are in-

creasing, concave, and continuously differentiable in x, they are strictly increasing and
strictly concave in x1, and they satisfy a strong Inada condition: for any sequence xn

1 → 0,
we have supz∈Z�(x2�����xL)∈RL−1+ uh(z� (x

n
1�x2� � � � � xL)) → −∞. Utility is bounded above: there

exists a ū such that uh(z�x) ≤ ū for all h ∈ H, z ∈ Z, x ∈ C.

The assumption on utility seems strong, but it is a direct generalization of the assumptions
in Duffie et al. (1994) to an economy with several commodities and continuous shocks.
In specific applications, the assumption that individual endowments are strictly positive
in the “essential” commodity, good 1, and the assumption that aggregate endowments
are positive in all goods can be replaced by alternative assumptions, as we discuss in Sec-
tion 4.2.

As in Duffie et al. (1994), Assumption 1 implies that there is a c > 0 such that, inde-
pendently of prices, an agent will never choose consumption in commodity 1 that is below
c. The reason is that budget feasibility implies that an agent can always consume his or
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her endowments (the agent cannot sell them on financial markets in advance), and we
therefore must have, for any shock z and for any x with x1 < c,

uh(z�x)+ δu

1 − δ
<

1
1 − δ

inf
z∈Z

uh(z�x)�

where ū is the upper bound on Bernoulli utility and x1 = ω�xl = 0� l = 2� � � � �L.
The lower bound on consumption implies an upper bound on marginal utility, which

we define by6

m̄ = max
h∈H

sup
x∈RL+�x1≥c/2�z∈Z

∂uh(z�x)

∂x1
� (1)

We make the following assumptions on production possibilities:

ASSUMPTION 2: For each shock z, the production set Y(z) ⊂ RL is assumed to be
closed, convex-valued, to contain RL

−, to exhibit constant returns to scale—that is, y ∈
Y(z) ⇒ λy ∈ Y(z) for all λ≥ 0, and to satisfy Y(z)∩ −Y(z) = {0}. In addition, production
is bounded above: There is a κ̄ ∈ R+ so that for all κ ∈ KU , h ∈ H, z ∈ Z, l ∈ LK , and for
all α ∈RHJ

+ ,

∑
h∈H

(
A0

h(z)αh − κh − eh(z)
) ∈ Y(z) ⇒ sup

z′

∑
h∈H

(
fhl

(
z′) +

∑
j∈J

a1
hjl

(
z′)αhj

)

≤ max
[
κ̄�

∑
h∈H

κhl

]
�

While the first part of Assumption 2 is standard, the second part is a strong assumption
on the interplay of intra- and interperiod production. For each capital good, the econ-
omy can never grow above κ̄ when starting below that limit. The assumption is made for
convenience and ensures boundedness of consumption. In specific applications, stronger
assumptions on the correspondence Y(·) can lead to a relaxation of the second part of
Assumption 2 (see Section 4.2 below).

We define

K =
{
κ ∈ KU :Hω ≤

∑
h∈H

κhl ≤ κ̄ for all l ∈ LK; if 1 ∈ LK� κh1 ≥ω for all h ∈ H
}

(2)

and take the state space to be S = Z × K with Borel σ-algebra S . We define Ξ to be the
set of storage decisions across agents, α, that ensure that next period’s endogenous state
lies in K:

Ξ = {
α ∈RHJ

+ : (fh(z′) +A1
h

(
z′)αh

)
h∈H

∈ K for all z′ ∈ Z
}
� (3)

The following proposition gives a characterization of recursive equilibria that is at the
heart of our existence proof below.

6In our results below, we will often require that variables are actually bounded away from some lower (or
upper) bound b (or b̄). In order to ensure this, we take a known bound a (or ā) in R++ and define b = a/2
(b̄ = 2ā).
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PROPOSITION 1: Suppose Assumptions 1 and 2 hold. Then a recursive equilibrium exists if
there are bounded functions M : S → RHL

+ such that, for each s = (z�κ) ∈ S, there exist prices
p̄ ∈ �L−1, p̄1 > 0, production plans ȳ ∈ Y(z), and choices {(x̄h� ᾱh)h∈H with ᾱ ∈ Ξ such that
for each h ∈ H,

Mh1(s) = ∂uh(z� x̄h)

∂x1
� Mhl(s) = Mh1(s)

p̄l

p̄1
� l = 2� � � � �L

and

(x̄h� ᾱh) ∈ arg max
xh∈C�αh∈RJ+

uh(z�xh)+ δEs

[
Mh

(
s′)A1

h

(
z′)αh

]
(4)

s.t. −p̄ · (xh +A0
h(z)αh − κh − eh(z)

) ≥ 0�

where

s′ = (
z′�

(
A1

h

(
z′)ᾱh + fh

(
z′))

h∈H

)
�

production plans are optimal,

ȳ ∈ arg max
y∈Y(z)

p̄ · y�
and markets clear, ∑

h∈H

(
x̄h +A0

h(z)ᾱh − eh(z)− κh

) = ȳ�

The key idea of this proposition is that the first-order conditions of (4) are identical to the
agents’ intertemporal Euler equations. The proof proceeds by showing that these Euler
equations are necessary and sufficient for optimal intertemporal choices. The alternative
characterization of a recursive equilibrium in terms of M-functions provided in Proposi-
tion 1 is useful because it allows us to show existence through a fixed-point argument in
the space of these marginal utility functions. This strategy of proof is possible as we can
(under suitable additional assumptions) show that, for any given measurable and bounded
function M(·), there exist prices and choices satisfying the conditions in Proposition 1.
This is formalized in Lemma 2 below.

3.2. Existence Under Assumptions on the Transition

Using the characterization of recursive equilibrium given in Proposition 1, we now
prove its existence by making direct assumptions on the function that maps the current
recursive state and current actions into the probability distribution of next period’s recur-
sive state. In Section 3.3, we provide concrete conditions on the exogenous shocks that
are sufficient to ensure that these assumptions hold.

Assuming that the probability distribution of the next period’s state varies continuously
with current actions, we will show that the operator defined by the equilibrium conditions
is a non-empty correspondence on the space of marginal utility functions. By the Fan–
Glicksberg fixed-point theorem, this implies the existence of a fixed point of the convex
hull of this correspondence. Making an additional assumption that ensures the presence
of “noise” as in Duggan (2012)—the actual assumption we make is from He and Sun
(2017)—we can prove the existence of a recursive equilibrium. Note that, in general, con-
tinuation equilibria will not be unique and our assumptions imply nothing about their
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uniqueness. However, Assumption 3(1) and (2) below ensure that there exists a measur-
able selection of continuation equilibria whose conditional expectation is a continuous
function of today’s choices. Furthermore, Assumption 3(3) ensures that any measurable
selection of the convex hull of all continuation equilibria is itself a continuation equi-
librium. While our assumptions do not rule out multiple continuation equilibria, they
guarantee the existence of a recursive equilibrium.

To state the assumptions formally, first note that the exogenous transition probability
P implies, given choices α ∈ Ξ, a transition probability Q(·|s�α) on S : given α across all
agents, and next period’s shock z′, the next period’s endogenous state is given by(

fh
(
z′) +A1

h

(
z′)αh

)
h∈H

�

To prove the existence of a recursive equilibrium, we first make additional assumptions
directly on Q. To state them, we need the following definition from He and Sun (2017):
Given a measure space (S�S) with an atomless probability measure λ and a sub-σ-algebra
G, let GB and SB be defined as {B∩B′ : B′ ∈ G} and {B∩B′ : B′ ∈ S}, for any non-negligible
set B ∈ S . A set B ∈ S is said to be a G-atom if λ(B) > 0 and, given any B0 ∈ SB, there
exists a B1 ∈ GB such that λ(B0
B1)= 0.

The following assumptions are from He and Sun (2017)7—in Section 3.3, we give as-
sumptions on fundamentals that imply Assumption 3 and thereby ensure existence.

ASSUMPTION 3:
(1) For any sequence αn ∈ Ξ with αn → α0 ∈ Ξ,

sup
B∈S

∣∣Q(
B|s�αn

) −Q
(
B|s�α0

)∣∣ → 0�

(2) For all (s�α), Q(·|s�α) is absolutely continuous with respect to the probability mea-
sure λ on (S�S) with Radon–Nikodym derivative q(·|s�α).

(3) There is a sub σ-algebra G of S such that S has no G atom and q(·|s�α) and A1(·)
are G-measurable for all s = (z�κ) and all α ∈ Ξ.

The first existence result of this paper is as follows:

PROPOSITION 2: Under Assumptions 1–3, a recursive equilibrium exists.

To prove the result, let Lm
∞(S�S�λ) be the space of essentially bounded and measurable

(equivalence classes of) functions from S to Rm with m = HL. Following Nowak and
Raghavan (1992) and Duggan (2012), we endow Lm

∞ with the weak* topology σ(Lm
∞�Lm

1 ).
For any b > 0, the set of measurable functions that are λ-essentially bounded above by b
and below by 0 is then a non-empty, convex, and weak* compact subset of a locally convex,
Hausdorff topological vector space. We denote this set by Mb ⊂ Lm

∞. Since S is a separable
metric space, Lm

1 is separable, and consequently Mb is metrizable in the weak* topology.
We define L+

∞ ⊂ Lm
∞ to be the set of functions in Lm

∞ that are essentially bounded below
by zero. Given any M̄ = (M̄1� � � � � M̄H) ∈L+

∞, we define

EM̄
h

(
s�xh�αh�α

∗) = uh(z�xh)+ δEs

[
M̄h

(
s′) ·A1

h

(
z′)αh

]
(5)

7Assumption 3(1) and (2) correspond to the assumptions made by He and Sun (2017) on the transition
probability representing the law of motion of the states. Assumption 3(3) corresponds to their crucial sufficient
condition for existence, called the “coarser transition kernel.”
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with

s′ = (
z′�

(
fh

(
z′) +A1

h

(
z′)α∗

h

)
h∈H

)
�

In the definition of EM̄
h , the αh ∈ RJ

+ stands for the choice of agent h, while α∗ ∈ RHJ
+ is

taken by individuals as given—in particular, its influence on the state transition. Lemma 1
states the properties of the function EM̄

h that we need in Lemma 2.

LEMMA 1: Given any M̄ ∈ L+
∞ and h ∈ H, the function EM̄

h (·�xh�αh�α
∗) is measurable

in s. For given s, the function is jointly continuous in xh, αh, α∗, and M̄ .

The next lemma is the key result in this subsection, and it guarantees the existence of
a policy in the current period that satisfies the equilibrium conditions, given arbitrary,
measurable, and bounded marginal utilities in the subsequent period.8 The key idea is
that Lemma 1 implies that the agents’ objective functions are continuous and a standard
fixed-point argument can be employed to show the existence of market clearing prices in
the current period for any (bounded and measurable) continuation marginal utility in the
subsequent period.

LEMMA 2: For each b > 0, there is an ε > 0 such that for any M̄ ∈ Mb and all s = (z�κ) ∈
S, there exist x̄ ∈ RHL

+ , ᾱ ∈Ξ, ȳ ∈ Y(z), and p̄ ∈ �L−1 with p̄1 ≥ ε such that∑
h∈H

(
x̄h +A0

h(z)ᾱh − eh(z)− κh

) = ȳ� (6)

for each agent h

(x̄h� ᾱh) ∈ arg max
xh∈C�αh∈RJ+

EM̄
h (s�xh�αh� ᾱ)

(7)
s.t. −p̄ · (xh − eh(z)− κh +A0

h(z)αh

) ≥ 0

and

ȳ ∈ arg max
y∈Y(z)

p̄ · y� (8)

For a given M̄ , we define the (consumption) correspondence s ⇒ NM̄(s) to contain all
((xh)h∈H�p) such that there exist (αh)h∈H ∈ Ξ and y ∈ Y(z) that satisfy Equations (6), (7),
and (8). We define the associated (marginal utility) correspondence s⇒ PM̄(s) by

PM̄(s) =
{(

∂uh(z�xh)

∂xh1
�
p2

p1

∂uh(z�xh)

∂xh1
� � � � �

pL

p1

∂uh(z�xh)

∂xh1

)
h∈H

: (x�p) ∈ NM̄(s)

}
�

and Pco
M̄

by requiring

Pco
M̄
(s) = conv

(
PM̄(s)

)
for all s ∈ S�

where conv(A) denotes the convex hull of a set A. Let R(M̄) be the set of (equivalence
classes of) measurable selections of PM̄ , and Rco(M̄) the set of measurable selections

8In our setup, this result plays the same role as the result that there always exists a mixed strategy Nash
equilibrium for the stage game in the stochastic game setup.
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of Pco
M̄

. Note that for any M ⊂ Mb, this defines a correspondence Rco : M ⇒ L+
∞. In the

following, we first establish that for convex and closed domains M, this correspondence
has a closed graph and non-empty, convex values. Then we go on to show that the set M
can be chosen to ensure that Rco maps into M and that a fixed point of this map describes
a recursive equilibrium as in Proposition 1. The following lemma is an important but
standard technical result (see, e.g., Nowak and Raghavan (1992)).

LEMMA 3: For each M̄ ∈ L+
∞, the correspondence PM̄(s) is weakly measurable and

compact-valued, and, for any b > 0 and any weak* closed and convex M ⊂ Mb, the cor-
respondence Rco : M ⇒ Lm

∞ is non-empty, convex, weak* closed-valued, and has a weak*
closed graph.

As explained in the Introduction, our existence proof relies on the Fan–Glicksberg
fixed-point theorem, which will guarantee the existence of a fixed point of Rco. In order to
deduce from that the existence of a recursive equilibrium, we follow a similar approach
as He and Sun (2017).

LEMMA 4: Let F : S ⇒ RHL be an integrably bounded and closed-valued correspondence
and define Fco(s) = conv(F(s)) for all s ∈ S. Let M(s)= (Mh1(s)� � � � �MhL(s))

H
h=1 be a mea-

surable selection of Fco. Then there exists an M̂ that is a measurable selection of F such that,
for all h ∈ H, s ∈ S, α ∈Ξ,∫

S
Mh

(
s′)A1

h

(
z′)dQ(

s′|s�α) =
∫

S
M̂h

(
s′)A1

h

(
z′)dQ(

s′|s�α)
�

For arbitrary Mb, the correspondence Rco : Mb ⇒Lm
∞ does not necessarily map into Mb.

The final lemma of this section establishes the existence of a suitable subset of L+
∞, which

can be used for the fixed-point argument.

LEMMA 5: There exists a convex and weak* compact set M∗ ⊂L+
∞ such that Rco(M̄) ⊂ M∗

for all M̄ ∈ M∗.

To complete the proof of the existence of a recursive equilibrium—that is to say, the
proof of Proposition 2, recall the statement of the Fan–Glicksberg theorem (see, e.g.,
Aliprantis and Border (2006, Theorem 17.55)). Suppose M is a non-empty compact con-
vex subset of a locally convex Hausdorff topological vector space; then a correspondence
M ⇒ M has a fixed point if it has closed graph and non-empty convex values. For M∗

as in Lemma 5, by Lemma 3 and the Fan–Glicksberg fixed-point theorem, there exists a
M̂ ∈ M∗ such that M̂ ∈ Rco(M̂). By Lemma 4, it is then clear that for all s, PM̂(s) = PM∗(s)
and M∗ must be a S-measurable selection of PM∗(s). Therefore, there exists a bounded
function M∗ that satisfies the conditions of Proposition 1 and a recursive equilibrium ex-
ists.

3.3. The Existence Theorem

So far, we have shown the existence of a recursive equilibrium under Assumptions 1–
3. However, Assumption 3 is not a direct assumption on the fundamentals of the econ-
omy, but rather on how the transition probability for exogenous and endogenous states
varies with choices. We now provide concrete assumptions on the stochastic process of
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exogenous shocks—assumptions that guarantee Assumption 3 and thus the existence of a
recursive equilibrium.

In particular, we now assume that the space of exogenous shocks can be decomposed
into three complete, separable metric spaces, Z = Z0 × Z1 × Z2 with Borel σ-algebra
Z =Z0 ⊗Z1 ⊗Z2, and the shock is given by z = (z0� z1� z2). Moreover, for each i = 0�1�2
there is a measure μzi on Zi and there are conditional densities rz0(z

′
0|z� z′

1), rz1(z
′
1|z), and

rz2(z
′
2|z� z′

0� z
′
1) such that, for any B ∈Z , we have

P(B|z) =
∫

Z1

∫
Z0

∫
Z2

1B

(
z′)rz2

(
z′

2|z� z′
0� z

′
1

)
rz0

(
z′

0|z� z′
1

)
rz1

(
z′

1|z
)
dμz2

(
z′

2

)
dμz0

(
z′

0

)
dμz1

(
z′

1

)
�

To ensure the continuity of the state transition in Assumption 3(1), we assume that
the shock z0 is purely transitory, has a continuous density, and only affects agents’ f -
endowments. Moreover, given z1 and z2, there is a diffeomorphism from Z0 to a subset of
K. More precisely, we make the following assumptions:

ASSUMPTION 4:
(1) z0 is purely transitory—that is, for all z0� ẑ0 ∈ Z0 and all (z1� z2) ∈ Z1 × Z2,

P(·|z0� z1� z2)= P(·|ẑ0� z1� z2)�

(2) Z0 is a subset of a Euclidean space, μz0 is Lebesgue, and the density rz0(·|z� z′
1) is

continuous for almost all (z� z′
1).

(3) For all (z1� z2) ∈ Z1 × Z2, (fh(·� z1� z2))h∈H is a C1-diffeomorphism from Z0 to a
subset of K with a non-empty interior. All other fundamentals are independent of z0—
that is, for all h, we can write eh(z) = eh(z1� z2), A0

h(z) = A0
h(z1� z2), A1

h(z) = A1
h(z1� z2),

uh(z� ·)= uh((z1� z2)� ·), Y(z) = Y(z1� z2).

Assumption 4(3) can be slightly relaxed in that we can allow A1
h(z) to depend on z0 if we

assume that, for all α ≥ 0, (fh(·� z′
1� z

′
2) + A1

h(·� z′
1� z

′
2)α)h∈H is a diffeomorphism from Z0

to a subset of RHL. For simplicity, we take A1
h(·) to be independent of z0.

To ensure that the z2 shock gives us convexity in the conditional expectation operator,
we make the following assumption:

ASSUMPTION 5: Conditionally on next period’s z′
1, the shock z′

2 is independent of both
z′

0 and the current shock z. Conditionally on z′
1, the measure μz2(·|z′

1) is absolutely con-
tinuous with respect to some atomless probability measure on Z2 so that we can write the
density as rz2(z

′
2|z� z′

0� z
′
1) = rz2(z

′
2|z′

1). Moreover, for each agent h, A1
h(z) and fh(z) do

not depend on z2.

This construction was first used in Duggan (2012). It is clear that this is a strict generaliza-
tion of a “sunspot.” The shock z2 can affect fundamentals (eh�uh)h∈H and Y in arbitrary
ways.

The following is the main result of the paper.

THEOREM 1: Under Assumptions 1, 2, 4, and 5, there exists a recursive equilibrium.

To prove the theorem, we show that Assumptions 4 and 5 imply Assumption 3 if state
transitions and the state space are reformulated appropriately. It is easy to notice that
since the shock z0 is purely transitory and does not affect any fundamentals except (fh),
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the realization of this shock is reflected in the value of the endogenous state κ and, except
for the value of κ, it is irrelevant for current endogenous variables and the future evolu-
tion of the economy. Therefore, departing slightly from our previous notation, we take
S = Z1 × Z2 × K with Borel σ-algebra S . Furthermore, we write S = Z1 × K for the space
that includes only the z1-shock component and the holdings in capital goods; we denote
the Borel σ-algebra on S by S . For each B ∈ S , take

Q(B|s�α)= P
({
z′ ∈ Z : ((z′

1� z
′
2

)
�
(
fh

(
z′) +A1

h

(
z′)αh

)
h∈H

) ∈ B
}|z)�

The following lemma establishes that Assumptions 4 and 5 provide sufficient conditions
for Assumption 3 and hence for the existence of a recursive equilibrium.

LEMMA 6: Under Assumptions 4 and 5, Q(·|s�α) satisfies Assumption 3.

The proof of Theorem 1 now follows directly from the argument above—that is to say,
the result follows directly from Proposition 2.

3.4. Financial Markets

So far, we have considered the case without trade in one-period financial assets. We
now briefly outline how financial markets can be incorporated into our framework. More
precisely, we assume that agents can trade in financial assets, in addition to undertak-
ing intertemporal storage. There are D one-period securities, d = 1� � � � �D, in zero net
supply, each being characterized by its payoff bd : Z → RL

+, which is a bounded and mea-
surable function of the shock. At each zt , securities are traded at prices q(zt); we denote
an agent’s portfolio by θh(z

t) ∈ RD.
In order to establish the existence of a recursive equilibrium we need to restrict agents’

portfolio choices. Let K be defined as in (2) above and Ξ as in (3). Each agent h faces a
constraint on trades in asset markets and storage decisions (α�θ), given by a convex and
closed set Θh ⊂ RJ

+ ×RD, which satisfies that whenever α ∈Ξ and (α�θ) ∈ Θh, then

A1
h

(
z′)α+

D∑
d=1

θdbd

(
z′) ≥ 0 for all z′ ∈ Z�

Without loss of generality, we assume that trade is possible in all financial securities—that
is, for each d, there is an agent h and an α ∈Ξ so that for some θd < 0, (α�θ) ∈Θh. Note
that collateral constraints of the form

A1
h

(
z′)α+

D∑
d=1

min(θd�0)bd

(
z′) ≥ 0 for all z′ ∈ Z (9)

are one example of constraints that satisfy our assumption. However, this is a somewhat
nonstandard formulation of a collateral constraint since agents cannot borrow against the
value of their future production—they need to borrow against future production directly.

As before, the endogenous state space is given by K. A recursive equilibrium is given by
maps from the state s ∈ S = Z × K to prices of commodities and financial securities and
to consumption, investment, and portfolio choices across all agents. The analogous result
to above is now as follows:
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A recursive equilibrium exists if there are functions M : S → RHL
+ such that, for each

s ∈ S, there exist prices (p̄� q̄) ∈ �L+D−1, a production plan ȳ ∈ Y(z) for each agent h,
optimal actions (x̄h� ᾱh� θ̄h) with

Mh1(s) = ∂uh(z�xh)

∂x1
� Mhl(s) =Mh1(s)

p̄l

p̄1
� l = 2� � � � �L�

such that

(x̄h� ᾱh� θ̄h) ∈ arg max
x∈C�(α�θ)∈Θh

uh(z�x)+ δEs

[
Mh

(
s′) ·

(∑
j

a1
hj

(
z′)αj +

∑
d

bd

(
z′)θd

)]
s.t. −q̄ · θ− p̄ · (x+A0

h(z)α− κh − eh(z)
) ≥ 0�

where

s′ =
(
z′�

(
A1

h

(
z′)ᾱh +

∑
d

θ̄hdbd

(
z′) + fh

(
z′))

h∈H

)
�

production plans are optimal,

ȳ ∈ arg max
y∈Y(z)

p̄ · y�
and markets clear, ∑

h∈H

(
x̄h +A0

h(z)ᾱh − eh(z)− κh

) = ȳ�

and ∑
h∈H

θ̄h = 0�

The proof is similar to the proof of Proposition 1.
Assumptions 4(3) and 5 now need to be extended: We assume in addition that for each

asset d, bd(z) is only a function of z1. The definition of the transition probability Q now
reads as

Q(B|s�α�θ)= P

({
z′ ∈ Z :

[
z′

1� z
′
2�

(
fh

(
z′) +A1

h

(
z′)αh +

∑
d

θhdbd

(
z′))

h∈H

]
∈ B

}∣∣∣z)�
With the additional assumptions, it is easy to see that Lemma 6 holds as stated. The proofs
of Lemmas 1, 3, and 4 are almost identical to those for the case without financial securi-
ties. To prove the analogue of Lemma 2, one can bound the set of admissible portfolios,
and proceed as in the proof of that lemma. To prove the analogue of Lemma 5, it is nec-
essary to make more precise the constraints subsumed in the set Θ—it is easy to see that
the proof of the lemma goes through for the case of collateral constraints (9).

4. APPLICATIONS

To illustrate the usefulness of the results obtained in our general model, we consider
heterogeneous agent versions of the Lucas (1978) asset pricing model and the Brock and
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Mirman (1972) stochastic growth model. We explain that these models can be analyzed
as special cases of our general setup and provide conditions that ensure the existence of
a recursive equilibrium. For the Lucas model, our sufficient conditions for existence are
much stronger than in Duffie et al. (1994): We assume that the Lucas tree holdings are
subject to displacement risk9 and that there is an atomless noise shock that may affect
endowments or preferences. For the neoclassical growth model, we assume that shocks to
labor-endowments have an i.i.d. component with continuous density and that there is an
atomless noise shock that may affect preferences or convey news about the probability of
future shocks. While our model has similarities to the models in Krusell and Smith (1998)
and in Miao (2006), it is important to note that it differs in two crucial aspects. We as-
sume that there are finitely many types of agents and we consider a structure of stochastic
shocks that is considerably more complicated than in these papers. In the conclusion of
this paper, we explain why our method of proof cannot be used to obtain existence of a
recursive equilibrium without such strong assumptions.

4.1. A Lucas Asset Pricing Model With Displacement Risk

In the heterogeneous agent version of the Lucas (1978) asset pricing model that is
examined in Duffie et al. (1994), there are J Lucas trees available for trade, j ∈ J =
{1� � � � � J}. These are long-lived assets in unit net supply that pay exogenous positive div-
idends in terms of the single consumption good. Agents can trade in these trees but are
not allowed to hold short positions and there are no other financial securities available
for trade. In our setup, this amounts to assuming that there are 2J + 1 commodities, the
first being the consumption good, the next J representing the old trees, and the last J the
new trees; there are J linear, intraperiod production technologies, each using one par-
ticular commodity j = 2� � � � � J + 1 as input, generating the same amount of commodity
j = J+2� � � � �2J+1 as output, and also producing some amount of commodity 1. Finally,
in intertemporal production, each agent can store each commodity j = J + 2� � � � �2J + 1,
which then yields the same amount of commodity j = 2� � � � � J + 1 in the next period.
Agents only derive utility from consumption of commodity 1 and have positive state-
contingent individual endowments only in this commodity—except for t = 0 when agents
have initial endowments in commodities j = 2� � � � � J + 1 that add up to 1. It is easy to see
that a sequential competitive equilibrium for this version of our model will have the same
consumption allocation as a sequential equilibrium in the heterogeneous agent Lucas
model. This exact model, however, does not satisfy the assumptions needed for Theo-
rem 1, as endowments in the Lucas trees are assumed to be zero. In contrast, Assump-
tion 4 demands that these endowments are “sufficiently stochastic” to make the state
transition norm-continuous. In the displacement risk model that we now present, endow-
ments in Lucas trees are stochastic because “new ideas replace old ideas” and thus part
of the old Lucas tree holdings are lost and replaced by new holdings of (potentially) other
agents. These new holdings are modeled as endowments in the Lucas trees. Thus, com-
pared to the above description of the Lucas tree model, we now assume that the intertem-
poral storage technologies for the Lucas trees are risky and that endowments in the Lucas
trees are stochastic.

The general model description from Section 2.1 still applies, yet substantially simplifies.
Denoting endowments in the consumption good and the Lucas trees by eh(zt) ∈ R++ and

9Modeling the redistributive effects of innovation as “displacement risk” has, in recent years, become pop-
ular in the asset pricing literature (see Garleanu et al. 2012a, 2012b). Introducing an assumption in the spirit
of this literature naturally implies a norm-continuous transition as required for our existence result.
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fh(zt) ∈ RJ
+, respectively, dividends of the Lucas trees by d(z) ∈RJ

+, holdings (i.e., storage
choices) in the tree by φh(z

t) ∈ RJ
+, and the fractions of Lucas trees that are displaced by

D(zt) = ∑
h∈H fh(zt), with 0 <Dj(zt) < 1 for all j ∈ J, we can define a sequential compet-

itive equilibrium as follows: given initial conditions (φh(z
−1))h∈H ∈ (�H−1)J , a sequential

competitive equilibrium is a process of Ft-adapted prices and choices,(
pt� (xh�t�φh�t)h∈H

)∞
t=0

�

such that markets clear and agents optimize—that is, the following (A) and (B) hold.
(A) Market clearing:∑

h∈H

(
xh

(
zt

) − eh
(
zt

)) − d
(
zt

) ≤ 0�
∑
h∈H

φh

(
zt

) = 1� for all zt�

(B) Each agent h= 1� � � � �H maximizes utility:

(xh�φh) ∈ arg max
(x�φ)≥0

Uh(x)

s.t. p1

(
zt

)(
x
(
zt

) − eh(zt)− d(zt)φ
(
zt

)) +p2

(
zt

)(
φ

(
zt

) − κh

(
zt

)) ≤ 0� for all zt�

where we define the Lucas tree holdings at the beginning of the period by

κh

(
zt

) = (
1 −D(zt)

)
φh

(
zt−1

) + fh(zt)�

Note that we have replaced the profit maximization condition from the general model
with market clearing conditions for the Lucas trees as intraperiod production is trivial—
there is only one use for each capital good. The endogenous part of the state is now the
Lucas tree holdings of all agents at the beginning of the period (after displacement), κ,
that is,

K =
{
κ ∈ RHJ :

∑
h∈H

κhj = 1�0 ≤ κhj ≤ 1 for all j ∈ J and all h ∈ H
}

= (
�H−1

)J
� (10)

With this slightly different choice for the endogenous state space, K, and the according
change of the set of admissible portfolio holdings Ξ, the proof from above goes through
with only little change. Assumption 1 remains unchanged, while the analogue of Assump-
tion 2 is now much more specific; it reads as follows.

ASSUMPTION 6:
(1) Dividends of the Lucas trees are bounded above and below: There is a ω ∈ R++

such that 0 < dj(z) < ω for all j ∈ J� z ∈ Z.
(2) Displacement is equal to the endowments in the Lucas tree and strictly between

zero and one: 0 <Dj(zt)= ∑
h∈H fh�j(zt) < 1 for all j ∈ J� z ∈ Z.

To state the analogues to Assumptions 4 and 5, we assume the same decomposition of the
exogenous shocks, Z = Z0 × Z1 × Z2 with Borel σ-algebra Z =Z0 ⊗Z1 ⊗Z2, such that we
have, for any B ∈Z ,

P(B|z)=
∫

Z1

∫
Z0

∫
Z2

1E

(
z′)rz2

(
z′

2|z� z′
0� z

′
1

)
rz0

(
z′

0|z� z′
1

)
rz1

(
z′

1|z
)
dμz2

(
z′

2

)
dμz0

(
z′

0

)
dμz1

(
z′

1

)
�
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We take Assumption 4(1) and (2) from above and replace Assumptions 4(3) and 5 by the
following assumption.

ASSUMPTION 7:
(1) For each agent h, and all (z1� z2) ∈ Z1 × Z2, (fhj(·� z1� z2)/Dj(·� z1� z2))h∈H�j∈J is a

C1-diffeomorphism from Z0 to a subset of K with a non-empty interior. All fundamentals
except f (z) and D(z) are independent of z0.

(2) Conditionally on next period’s z′
1, the shock z′

2 is independent of both z′
0 and the

current shock z. Conditionally on z′
1, the measure μz2(·|z′

1) is absolutely continuous with
respect to some atomless probability measure on Z2, so that we can write the density as
rz2(z

′
2|z� z′

0� z
′
1)= rz2(z

′
2|z′

1). Moreover, f (z) and D(z) do not depend on z2.

Note that Assumption 7(1) does not rule out that D(z) is independent of z0, as it is in
Corollary 1 below. All in all, the following theorem follows directly from Proposition 2
and Theorem 1 above.

PROPOSITION 3: Under Assumptions 1, 6, 4(1), (2), and 7, there exists a recursive equilib-
rium.

For illustration purposes, we now provide a concrete specification for the stochastic struc-
ture of the economic fundamentals that satisfies Assumptions 6, 4(1), (2), and 7.

COROLLARY 1: Suppose displacement is strictly between zero and one, 0 <D(zt) < 1, and
endowments in the Lucas tree are given by fh(zt) = D(zt) · f̃h(zt), where f̃h(zt) ∈ (�H−1)J is
i.i.d. and has a continuous density. Suppose further that 0 < dj(z) < ω for all j ∈ J� z ∈ Z
and that aggregate output,

∑
j∈J dj(zt) + ∑

h∈H eh(zt), can be written as the sum of an i.i.d.
component that has continuous density over a compact subset of R++ and of a Markovian
component. Then Assumptions 6, 4(1), (2), and 7 are satisfied.

The corollary directly follows from Proposition 3 by constructing the dependence on
the shock components, z0� z1� z2, as follows: First, D(z) depends on z1 only—that is,
we can write D(z) = D(z1). Thus, the total amount of displacement is driven by the
standard shock component. Second, f̃h(z) depends on z0 only—that is, we can write
f̃h(z) = f̃h(z0). Thus, the fractions of the new Lucas tree that go to the different agents
are driven by the purely transitory component of the shock. Finally, we assume that∑

j∈J dj(zt) + ∑
h∈H eh(zt) = τ1(z1) + τ2(z2), where τ1(z1) is a stochastic shock to endow-

ments and dividends that is persistent and τ(z2) is a transitory component of aggregate
output.

4.2. A Neoclassical Growth Model With Heterogeneous Agents

We consider a one-sector stochastic production economy with infinitely lived hetero-
geneous agents and we prove the existence of a recursive equilibrium with beginning-of-
period cash-at-hand across agents as endogenous state.

The H infinitely lived agents have time-separable utility over consumption, supply labor
inelastically, and decide each period how much to consume and how much to save in risky
capital. To emphasize that there is only a single consumption good, we now denote each
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agent h’s consumption at t by ch�t . We allow discount factors to differ across agents and
to be stochastic. Agent h’s expected utility function is thus given by

Uh

(
(ch�t)

∞
t=0

) = E0

[ ∞∑
t=0

(
t∏

k=0

δh(zk)

)
uh(zt� ch�t)

]
�

At each node zt , agent h has a labor endowment lh(zt) = lh(zt), which he or she supplies
inelastically at the market wage w(zt). There is a storage technology that uses one unit of
the consumption good today to produce one unit of the capital good for the next period.
We denote the investment of household h in this technology by αh(z

t) ≥ 0 and the initial
endowment in capital by αh(z

−1) ≥ 0, where
∑

h∈H αh(z
−1) > 0. At time t, the household

sells the capital goods accumulated from the previous period, αh(z
t−1), to the firm for

a market price of 1 + r(zt) > 0. The price of the consumption good at each date event
is normalized to one. The intertemporal budget constraint of household h at node zt

therefore reads

ch
(
zt

) + αh

(
zt

) = lh
(
zt

)
w

(
zt

) + (
1 + r

(
zt

))
αh

(
zt−1

)
� αh

(
zt

) ≥ 0�

For simplicity, we assume that there are no financial markets. As in Section 3.4, the argu-
ment can be extended to a model with financial assets and appropriate trading restrictions.

There is a single representative firm, which in each period t uses labor and capital
to produce the consumption good according to a constant-returns-to-scale production
function F(zt�K�L). Since the firm maximizes profits, the rate of return on capital, 1 +
r(zt), will always equal the marginal product of capital, FK(zt�K�L), and the wage, w(zt),
will equal the marginal product of labor, FL(zt�K�L).

For given initial conditions, (z0� (αh(z
−1))h∈H), a competitive equilibrium is a collec-

tion of choices for households, (ch(zt)�αh(z
t))h∈H, and for the representative producer,

(K(zt)�L(zt)), and prices, (r(zt)�w(zt)), such that households and the firm maximize
and markets clear—that is to say, for all zt ,

L
(
zt

) =
H∑
h=1

lh
(
zt

)
� K

(
zt

) =
H∑
h=1

αh

(
zt−1

)
� (11)

In order to use our analysis above to show the existence of a recursive equilibrium, we
need to reformulate Assumptions 1, 2, and 4. In Assumption 1, it is assumed that the
agent has strictly positive endowments in the consumption good, and for Assumption 4,
it is crucial to assume that agents have endowments in the capital good (in every period).
Instead, we want to assume that agents only have positive endowments in labor. In order
to prove the existence of a recursive equilibrium and formulate a version of Assumption 4,
we therefore need to redefine the endogenous state. Instead of beginning-of-period cap-
ital holdings, we will take “cash-at-hand” (i.e., the sum of wages and returns to capital)
across agents to be the endogenous state variable. Formally, we define the cash-at-hand
of agent h at zt to be

κh

(
zt

) = lh
(
zt

)
w

(
zt

) + (
1 + r

(
zt

))
αh

(
zt−1

)
�

This choice of state variable allows us to make natural assumptions on fundamentals. The
analogue to Assumption 1 is as follows.
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ASSUMPTION 8:
(1) Labor endowments are bounded above and below: there are l > l > 0 such that for

all z ∈ Z and all h ∈ H,

l > lh(z) > l�

(2) For all h ∈ H, the instantaneous discount factor is measurable in z and, for any
z ∈ Z, it satisfies δh(z) ∈ (0�1).

(3) The Bernoulli functions, uh : Z ×R++ → R, h ∈ H, are measurable in z and strictly
increasing, strictly concave, and continuously differentiable in c. For each z ∈ Z, they sat-
isfy a strong Inada condition: Along any sequence cn → 0, supz∈Z uh(z� c

n)→ −∞. More-
over, utility is bounded above—that is, there exists a ū such that for all h ∈ H, uh(z� c)≤ ū
for all z ∈ Z, c ∈R++.

To simplify notation, we define u′
h(z� c) = ∂uh(z�c)

∂c
. Instead of the rather abstract Assump-

tion 2, we now have the following.

ASSUMPTION 9:
(1) The production function, F(z�K�L), is measurable in z and continuously differen-

tiable in (K�L).
(2) For each z ∈ Z, F(z� ·) is concave and increasing in (K�L) and it exhibits constant

returns to scale.
(3) For each z ∈ Z and for each L > 0, we have limK→0 FK(z�K�L) = +∞ and

F(z�0�L)= 0; for each K > 0, we have limL→0 FL(z�K�L) = +∞ and F(z�K�0)= 0.
(4) There is some K̄ < +∞ such that F(z�K�

∑
h∈H lh(z)) < K for all K > K̄, and all

z ∈ Z.

Assumption 9 readily implies that, in equilibrium, aggregate production is always bounded
above by some κ if the initial aggregate cash-at-hand is below κ. In applications, re-
searchers often assume Cobb–Douglas production with a multiplicative TFP shock. This
is consistent with our assumptions as long as depreciation is positive at all shocks. Since
aggregate labor used in production is a function of the shock alone, we can write the
production function and its derivatives as

f (z�K)= F

(
z�K�

H∑
h=1

lh(z)

)
� fK(z�K)= FK

(
z�K�

H∑
h=1

lh(z)

)
�

fL(z�K)= FL

(
z�K�

H∑
h=1

lh(z)

)
�

Since we assume that agents have no endowments in the capital good, we need to make
an additional assumption to ensure that, in any equilibrium, aggregate capital is always
bounded away from zero. We make the following assumption.

ASSUMPTION 10: There is a K > 0 and an ε > 0 such that for each agent h and all
K ≥K,

inf
z∈Z

[
−u′

h

(
z� lh(z)fL(z�K)+ K

H
fK(z�K)−K/H

)
+Ez

[
δh

(
z′)fK(

z′�K
)
u′
h

(
z′� fK

(
z′�K

)
K/H + lh

(
z′)fL(

z′�K
))]]

> ε�
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Although this appears to be a complicated joint assumption on utility and production, it
can be verified as holding in standard settings. This assumption guarantees that aggregate
capital will always be above K. Together with the assumption of strictly positive labor
endowments, this assumption also implies a lower bound on each individual’s cash-at-
hand, which we denote by κ > 0.

We define the endogenous part of the state space to be

K =
{
κ ∈ RH

+ :
∑
h∈H

κh ≤ 2κ̄� and κhl ≥ 1
2
κ for all h ∈ H

}
(12)

and assume, as above, that the shock space can be decomposed into three complete, sep-
arable metric spaces, Z = Z0 × Z1 × Z2, with Borel σ-algebra Z =Z0 ⊗Z1 ⊗Z2. For each
i = 0�1�2, there is a measure μzi on Zi and there are conditional densities rz0(z

′
0|z� z′

1),
rz1(z

′
1|z), and rz2(z

′
2|z� z′

0� z
′
1) such that, for any B ∈Z , we have

P(B|z) =
∫

Z1

∫
Z0

∫
Z2

1B

(
z′)rz2

(
z′

2|z� z′
0� z

′
1

)
rz0

(
z′

0|z� z′
1

)
rz1

(
z′

1|z
)
dμz2

(
z′

2

)
dμz0

(
z′

0

)
dμz1

(
z′

1

)
�

To ensure continuity of the state transition in Assumption 3(1), we assume that the
shock z0 is purely transitory, has a continuous density, and only affects agents’ endow-
ments in labor. Moreover, given z1 and z2, there is a C1-diffeomorphism from Z0 to a
subset of possible labor endowments. More precisely, we retain Assumptions 4(1) and (2)
above and replace Assumptions 4(3) and 5 by the following assumption.

ASSUMPTION 11:
(1) For each agent h, and all (z1� z2) ∈Z1 ×Z2, (lh(·� z1� z2))h∈H is a C1-diffeomorphism

from Z0 to a bounded subset of RH
+ with a non-empty interior. All other fundamentals are

independent of z0.
(2) Conditionally on next period’s z′

1, the shock z′
2 is independent of both z′

0 and the
current shock z. Conditionally on z′

1, the measure μz2(·|z′
1) is absolutely continuous with

respect to some atomless probability measure on Z2 so that we can write the density as
rz2(z

′
2|z� z′

0� z
′
1)= rz2(z

′
2|z′

1). Moreover, f (z�K) does not depend on z2 and, for each agent
h, lh(z) does not depend on z2.

We thus assume that δh(zt) and uh(zt� ·) can possibly depend on z2. Moreover, the prob-
abilities over future realizations of z1 can clearly depend on z2. In this case, z2 can be
interpreted as a “news shock.”

As above, we can now take the state space to consist of shocks 1 and 2 as well as the
endogenous state. That is to say, we take

S = Z1 × Z2 × K

with Borel σ-algebra S . We have the following theorem.

PROPOSITION 4: Under Assumptions 8, 9, 10, 4(1), (2), and 11, there exists a recursive
equilibrium.

The proof of this proposition is along the lines of the proofs of Proposition 2 and The-
orem 1. However, since we define the endogenous state differently, some key parts are
different. A complete proof can be found in the Appendix.
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As for the case of the Lucas tree model, it is useful to give one concrete specification of
shocks that satisfies our assumptions.

COROLLARY 2: Suppose each agent’s labor endowments can be written as the sum of an
i.i.d. component that has a continuous density over a compact subset of R++, and of a com-
ponent that depends on some shock z1 that follows a Markov process. Also suppose that
production functions and utility functions depend on this shock z1. If there exists a shock z2

that is independent of the past realization of (z1� z2) but might depend on the current z1, and
if this shock does not affect any fundamentals except possibly discount factors, utility, and
transition probabilities, then Assumptions 4(1), (2), and 11 are satisfied.

5. CONCLUSION

We prove the existence of recursive equilibria in general stochastic production
economies with infinitely lived agents and incomplete markets. In order to do so, we
have to make some nonstandard assumptions on the stochastic process of economic fun-
damentals.

Most importantly, we need to assume that there are atomless shocks to fundamentals.
In contrast, in many applications exogenous shocks follow a Markov chain with finite
support. However, such a discrete-shock process is often just an approximation to a true
data-generating process with atomless innovations (e.g., following Tauchen and Hussey
(1991)). In this case, one should be more concerned with the existence of an epsilon-
equilibrium of the discrete-shock model and its relation to an exact equilibrium for the
continuous-shock model. This question can only be posed if the existence of an exact
recursive equilibrium can be guaranteed.

In addition, we need to guarantee, by Assumption 4, that agents’ current choices lead to
a non-degenerate distribution over the endogenous state next period. This is in contrast
to many standard models in which current choices pin down next period’s endogenous
state deterministically. In stochastic games, however, it is well known that a so-called
deterministic transition creates problems for the existence of Markov equilibria (see, e.g.,
Levy (2013)).

Moreover, Levy and McLennan (2015) provided an example of a stochastic game that
illustrates that continuity assumptions along the line of our Assumption 4 are not suffi-
cient to guarantee the existence of a Markov equilibrium and that a version of Assump-
tion 5 is needed as well. Our stylized example of nonexistence in Section 2.3 violates
Assumptions 4 and 5 above.10 To see that Assumption 5 does not suffice to ensure ex-
istence, note that a special case of the assumption is to assume that one component of
the shock does not affect fundamentals (a sunspot) and is i.i.d. with atomless distribution.
Equilibrium prices may then depend on the realization of this shock, but irrespective of
what one assumes about the distribution of prices, the same argument as in Section 2.3
implies that there can never be an equilibrium with positive storage. Zero storage, how-
ever, entails that—independently of the realization of the sunspot—the price in shock 3
is uniquely determined by the shock in the previous period, implying the nonexistence of
a recursive equilibrium. In contrast to Assumption 5, one can easily verify that Assump-

10It also violates Assumption 1, yet it is easy to see that Assumption 1 alone cannot restore existence in
the example; the specific endowments and preferences were simply chosen to make the examples as simple as
possible.



RECURSIVE EQUILIBRIA IN DYNAMIC ECONOMIES 1491

tion 4 restores existence in the example.11 As long as there is a non-atomic shock to the
endowments of the capital good, a recursive equilibrium exists in our example. If one con-
siders a sequence of economies along which the variance of the shock converges to zero,
one can obtain the existence of a competitive equilibrium in the limit, but this equilibrium
is not recursive.

While we have to make some strong assumptions, our paper provides the only result in
the literature that ensures the existence of a recursive equilibrium in any variation of the
model. Therefore, even if the assumptions do not hold for a specific tractable formulation
used in an application, it is useful to understand under which additional assumptions
existence can be obtained. It is the subject of further research to examine whether the
general existence of a recursive equilibrium can be established without some version of
Assumptions 4 and 5.

APPENDIX: PROOFS

PROOF OF PROPOSITION 1: Note that if the conditions in the lemma are satisfied, then
there exist ((x̄h�t� ᾱh�t)h∈H� p̄t)

∞
t=0 such that markets clear, budget equations hold, and there

exist multipliers νh(z
t) and ξh(z

t) such that the following first-order conditions hold for
each agent h ∈ H and all zt :

Dxuh

(
zt� x̄h

(
zt

)) − νh
(
zt

)
p̄

(
zt

) + ξh

(
zt

) = 0� (13)

x̄h

(
zt

) ⊥ ξh

(
zt

) ≥ 0� (14)

ᾱh

(
zt

) ⊥ (−νh
(
zt

)
p̄

(
zt

)
A0

h(zt)+ δEzt
[
νh

(
zt+1

)
p̄

(
zt+1

)
A1

h(zt+1)
]) ≥ 0� (15)

It suffices to show that these conditions are sufficient for (x̄h�t� ᾱh�t) to be a solution to the
agents’ infinite horizon problem. Following Duffie et al. (1994), assume that for any agent
h, given prices, a budget feasible policy (x̄h�t� ᾱh�t) satisfies (13)–(15). Suppose there is
another budget feasible policy (xh�t� αh�t). Since the value of consumption in 0 only differs
by the value of production plans, concavity of uh(z� ·) together with the gradient inequality
implies that

uh

(
z0� x̄h

(
z0

)) ≥ uh

(
z0�xh

(
z0

)) +Dxuh

(
zu� x̄h

(
z0

))(
x̄h

(
z0

) − xh

(
z0

))
≥ uh

(
z0�xh

(
z0

)) + νh
(
z0

)
p̄

(
z0

)(
x̄h

(
z0

) − xh

(
z0

))
(16)

= uh

(
z0�xh

(
z0

)) + νh
(
z0

)
p̄

(
z0

)
A0

h(z0)
(
αh

(
z0

) − ᾱh

(
z0

))
�

We show by induction that, for any T , it holds that

E0

[ ∞∑
t=0

δtuh

(
zt� x̄h

(
zt

))] ≥ E0

[
T∑
t=0

δtuh

(
zt� xh

(
zt

))] +E0

[ ∞∑
t=T+1

δtuh

(
zt� x̄h

(
zt

))]
(17)

+ δTE0

[
νh

(
zT

)
p

(
zT

)
A0

h(zT )
(
αh

(
zT

) − ᾱh

(
zT

))]
�

11 Unfortunately, there are many other perturbations to fundamentals that also restore existence. As
Citanna and Siconolfi (2008) pointed out (for OLG economies, but the argument also applies to examples
of nonexistence in economies with infinitely lived agents), all examples for which the economy decomposes
into several two-period economies suffer from the shortcoming that they are not robust—perturbations in
endowments restore the existence of a recursive equilibrium.
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By (16), this inequality holds for T = 0. To obtain the induction step when ᾱj > 0, we use
the first-order conditions to substitute δEzt−1[νh(zt)p̄(zt)a1

hj(zt)(αhj(z
t−1)− ᾱhj(z

t−1))] for

νh
(
zt−1

)
p̄

(
zt−1

)
a0
hj(zt−1)

(
αhj

(
zt−1

) − ᾱhj

(
zt−1

))
�

and then apply the budget constraint and the law of iterated expectations. When ᾱj = 0,
it is clear that αj ≥ ᾱj and since

δEzt−1

[
νh

(
zt

)
p̄

(
zt

)
a1
hj(zt)

] ≥ νh
(
zt−1

)
p̄

(
zt−1

)
a0
hj(zt−1)�

the induction step follows.
The second term on the right-hand side of (17) will converge to zero as T → ∞ since uh

is bounded above by Assumption 1 and below for the following reason: Mh1(s) = ∂uh(z�xh)

∂x1

is bounded above, thus by the strong Inada condition x1 is bounded below by some x1,
and therefore utility is bounded below by uh(x1�0� � � � �0). The third term will converge
to zero because the M-functions are assumed to be bounded above and production is
bounded by Assumption 2. Q.E.D.

PROOF OF LEMMA 1: The proof is analogous to the proof of Lemma 1 in Duggan
(2012). Q.E.D.

PROOF OF LEMMA 2: For any M̄ ∈ Mb and s = (z�κ) ∈ S, we define the following com-
pact sets:

Ỹ(s) =
{
y ∈ Y(z) : y +

∑
h∈H

(
eh(z)+ κh

) ≥ 0
}
�

C̃(s) =
{
xh ∈ C : 1

2
xh −

∑
h∈H

(
eh(z)+ κh

) ∈ Y(z)�xh1 ≥ cM̄

}
�

A =
{
αh ∈RJ

+ : fhl
(
z′) +

∑
j∈J

a1
hlj

(
z′)αhj ≤ 2κ̄ for all h ∈ H� l ∈ L� z′ ∈ Z

}
�

The lower bound on consumption in good 1, cM̄ , in the definition of C̃(s) will generally be
different from c as defined in Section 3.1, but for any given M̄ its existence is guaranteed
by Assumption 1. To ensure compactness of A, it is without loss of generality to assume
that for each agent h and each storage technology j, there is a commodity l and a shock
z′ such that a1

h�l�j(z
′) > 0. If this is not the case, it is always optimal for all h to set αh�j = 0.

For a given η> 0, we define the truncated price set �L−1
η = {p ∈ RL

+ : ∑L

l=1 pl = 1�p1 ≥
η}, and for each agent h= 1� � � � �H, the choice correspondence

�h
η : �L−1

η ×Ξ⇒ C̃(s)× A

by

�h
η

(
p�α∗) = arg max

xh∈C̃(s)�αh∈A
EM̄

h

(
s�xh�αh�α

∗)
s.t. −p · (xh − eh(z)− κh +A0

h(z)αh

) ≥ 0�
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By a standard argument, the correspondence � is convex-valued, non-empty-valued,
and upper-hemicontinuous. Define the producer’s best response �H+1

η : �L−1
η ⇒ Ỹ(s) by

�H+1
η (p)= arg max

y∈Ỹ(s)
p · y

and define a price player’s best response,

�0
η : (C̃(s)× A

)H × Ỹ(s)⇒ �L−1
η �

by

�0
η

(
(xh�αh)h∈H� y

) = arg max
p∈�L−1

η

p ·
(∑

h∈H

(
xh − eh(z)− κh +A0

h(z)αh

) − y

)
�

It is easy to see that this correspondence is also upper-hemicontinuous, non-empty, and
convex-valued. Finally, define

�H+2 : AH ⇒Ξ

by

�H+2(α)= arg min
α∗∈Ξ

∥∥α− α∗∥∥
2
�

By Kakutani’s fixed-point theorem, the correspondence (×H+1
h=0 �h

η) × �H+2 has a fixed
point, which we denote by (x̄� ᾱ� ȳ� ᾱ∗� p̄).

Since by budget feasibility we must have

p̄ ·
(∑

h∈H

(
x̄h − eh(z)− κh +A0

h(z)ᾱh

) − ȳ

)
≤ 0�

optimality of the price player implies that, for sufficiently small η > 0, the upper bound
imposed by requiring x ∈ C̃(s) and the upper bound on production will both never bind.
Consumption solves the agent’s problem for all x ∈ C and production maximizes profits
among all y ∈ Y(z). In addition, Assumption 2 implies that the upper bound on each αh

cannot be binding and that in fact ᾱ= ᾱ∗.
Finally, there must be some ε > 0 such that, for all η < ε, the fixed point must satisfy

that p̄1 ≥ ε. This is true because all commodities must either be consumed, used as an in-
put for intraperiod production, or stored. If p̄1 < ε, there must be some other commodity
l �= 1 with p̄l

p̄1
> 1−ε

(L−1)ε . But for sufficiently small ε > 0, the (relative) price of this commod-
ity is so high that it is not consumed—because marginal utility of good 1 is bounded away
from zero in C̃(s) and marginal utility of commodity l is finite (as utility is assumed to
be continuously differentiable on C = R++ × RL−1

+ ). Furthermore, good l can neither be
used for (constant-returns-to-scale) intratemporal production, nor for (linear) storage—
the agent who stores it could eventually increase his utility by selling a small fraction of
this commodity and increasing his consumption of commodity 1. Therefore, there is some
ε > 0 such that, for η < ε, the price player chooses a price with p̄1 ≥ ε and a standard
argument gives that ∑

h∈H

(
x̄h − eh(z)− κh +A0

h(z)ᾱh

) = ȳ�

This proves the lemma. Q.E.D.
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PROOF OF LEMMA 3: For given s ∈ S, the set of allocations x ∈ RHL
+ , α ∈ Ξ, y ∈ Y(z),

and prices p ∈ �L−1 satisfying (6), (7), and (8) can be described as solutions to a system
of equations and inequalities; compare the proof of Proposition 1. Moreover, the corre-
spondence s⇒ NM̄(s) is (non-empty) compact-valued. Applying results from Chapter 18
in Aliprantis and Border (2006) and Himmelberg (1975), it is easy to show that the corre-
spondence s⇒ PM̄(s) is weakly measurable.

By the selection theorem of Kuratowski and Ryll-Nardzewski, PM̄ has a measurable
selector (see Theorem 18.13 in Aliprantis and Border (2006)). Consequently, the map
M ⇒ Rco(M) is non-empty-valued, and obviously it is also convex-valued. Take Mn → M
as n → ∞, Mn�M ∈ M, and vn → v such that vn ∈ Rco(Mn) for each n. We assume that
both sequences converge in the weak* topology σ(Lm

∞�Lm
1 ). We need to show v ∈ R(M).

Since for a given s each EM
h (s� ·) is jointly continuous in (x�α�α∗) and M , and since the

equilibrium conditions can be expressed as weak inequalities, the correspondence M ⇒
PM(s) has a closed graph. Theorem 17.35 (2) in Aliprantis and Border (2006) implies that
the correspondence M ⇒ Pco

M(s) has a closed graph as well. Moreover, since S is a finite
measure space, Mazur’s lemma implies that there exists a sequence v̂n of finite convex
combinations of {vp : p = 1�2� � � �} such that some subsequence v̂n converges to v almost
surely, that is, v̂n(s) → v(s) for every s ∈ S \ S1 where the set S1 is of measure zero. Given
the closed graph of M ⇒ Pco

M(s), we must have that for any ε > 0, for sufficiently large n
the set Pco

Mn(s) is a subset of an ε-neighborhood of Pco
M(s). Therefore, for any ε > 0, there

is a k0 such that for all k > k0, v̂k(s) is within an ε-neighborhood of Pco
M(s). Therefore,

v(s) is in an ε-neighborhood of Pco
M(s), but since ε is arbitrary, we must have v(s) ∈ Pco

M(s)
for any s ∈ S \ S1. This proves that Rco : M ⇒ L+

∞ has a closed graph. Similarly, it can be
shown that M ⇒ Rco(M) is weak* closed-valued. Q.E.D.

PROOF OF LEMMA 4: Assumption 3 states that there is a sub-σ-algebra G of S such
that S has no G-atom. Defining

IS�G
F = {

E[f |G] : f is an S-measurable selection of F
}
�

it follows from Theorem 5 in Dynkin and Evstigenev (1977) that since S has no G-atom,
it must hold that IS�G

F = IS�G
co(F). Therefore, for each measurable selection of Fco, M , there

is a measurable selection, M̂ , of F such that E[M|G] = E[M̂|G]. Therefore, we must have
for each h and all (s�α) that∫

S
Mh

(
s′)A1

h

(
z′)dQ(

s′|s�α) =
∫

S
Mh

(
s′)A1

h

(
z′)q(

s′|s�α)
dλ

(
s′) =

∫
S
E

[
MhA

1
hqs�α|G

]
dλ

(
s′)

=
∫

S
E[Mh|G]A1

h

(
z′)q(

s′|s�α)
dλ

(
s′)

=
∫

S
E[M̂h|G]A1

h

(
z′)q(

s′|s�α)
dλ

(
s′)

=
∫

S
M̂h

(
s′)A1

h

(
z′)dQ(

s′|s�α)
�

This proves the result. Q.E.D.

PROOF OF LEMMA 5: The proof of Lemma 2 implies that there exists some c such that
whenever ((xh)h∈H�p) ∈ NM̄(s) for some M̄ ∈ L+

∞ and some s ∈ S, then xhl ≤ c for all h� l.
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This, together with Assumption 1, implies that there is an ε > 0 such that if (x(zt)) is the
consumption choice of some agent in any competitive equilibrium, then

uh(zt� x̃)+Ezt

[ ∞∑
i=1

δiuh

(
zt+i� (1 − ε)x

(
zt+i

))]
> Ezt

[ ∞∑
i=0

δiuh

(
zt+i� x

(
zt+i

))]
�

where x̃= (x1(z
t)+1� (1−ε)x2(z

t)� � � � � (1−ε)xL(z
t)). An upper bound on relative equi-

librium prices of goods that are not used as inputs to intratemporal production is then
given by 2

ωε
; if the price of any commodity relative to good 1 is above this threshold, then

some agent can sell a fraction ε of this commodity, consume one unit more of commod-
ity 1, and increase his lifetime utility. Assumption 2 implies that the relative price of any
input to production is bounded above by the zero profit condition. Taken together, this
implies that there is some pu such that, in any competitive equilibrium, it must be that
pl

p1
< 1

2p
u. Define a weak* compact and convex set

M0 = {
M ∈ L+

∞ :Mh1 ≤ m̄�Mhl ≤ pum̄� l = 2� � � � �L a.s. for all h ∈ H
}
�

where m̄ is defined in (1). For any set M ⊂L+
∞, define a correspondence s⇒ Pco

M(s) by

Pco
M(s) = conv

( ⋃
M∈M

PM(s)

)
for all s ∈ S�

and denote by Rco(M) the set of measurable selections of Pco
M . We construct the set M∗

inductively by defining, for each i = 0�1�2� � � � � Mi+1 = Rco(Mi)∩ M0.
Note that by the construction of Mi and by Lemma 4, any element of Mi, if it exists,

consists of equilibrium marginal utilities for an artificial (i+ 1)-period economy where, in
the last period, agents have some continuation utility M0 ∈ M0.

Defining M0 = 0, it is clear from the above construction of M0 that whenever M1 ∈
Rco(M0), we must have M1 ∈ M0. From the above argument, it follows that whenever
M2 ∈ Rco(M1), we must have M2 ∈ M0, and in fact that each Mi defined recursively in this
manner will lie in M0. Therefore, each Mi is non-empty. Obviously, each Mi is also convex.
By the same argument as in the proof of Lemma 3, each Mi is weak* closed and hence,
as a subset of M0, it is weak* compact. Obviously, we have M1 ⊂ M0, and if Mi ⊂ Mi−1,
it must follow that Mi+1 ⊂ Mi. Therefore, we must have for any i = 0�1� � � � that, for all
M ∈ Mi,

Rco(M)∩ M0 ⊂ Mi�

Assumption 1 together with discounting and the construction of the upper bound pu

guarantee that for T sufficiently large, if M̄ ∈ MT , there can be no solution to (6), (7), and
(8) with x1 ≤ 1

2c, or with pl

p1
>pu for some l = 2� � � � �L. Therefore, we have Rco(M̄) ⊂ M0

and we can take M∗ = MT . Q.E.D.

PROOF OF LEMMA 6: We first show that under Assumptions 4 and 5, Q(·|s�α) satisfies
Assumption 3(1). By Assumption 5, it suffices to show norm-continuity for the marginal
transition function on S , that is, that for any sequence αn ∈ Ξ with αn → α0 ∈ Ξ,

sup
B∈S

∣∣Qs

(
B|s�αn

) −Qs

(
B|s�α0

)∣∣ → 0
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for all s ∈ S. To show this, we first define, for given (z� z′
1) ∈ Z × Z1 and α ∈ Ξ, a C1-

diffeomorphism g(z�z′
1�α)

that maps Z0 into its range K̄(z�z′
1�α)

= g(z�z′
1�α)

(Z0) ⊆ K with
g(z�z′

1�α)
(z′

0)= (fh(z
′
0� z

′
1)+A1

h(z
′
1)αh)h∈H and a density

rκ
(
κ′|z� z′

1�α
) :=

{
rz0

(
g−1
(z�z′

1�α)

(
κ′)|z� z′

1

) · ∣∣J(g−1
(z�z′

1�α)

(
κ′))∣∣ if ∃ z0 : g(z�z′

1�α)
(z0)= κ′�

0 otherwise,

where |J(·)| denotes the determinant of the Jacobian.
Denoting by μκ the Lebesgue measure defined on the σ-algebra of Borel subsets of K,

for B ∈ S and αn ∈Ξ with αn → α0 ∈Ξ, we have

Qs

(
B|s�αn

) =
∫

Z1

∫
Z0

1B

[
z′

1�
(
fh

(
z′) +A1

h

(
z′)αn

h

)
h∈H

]
rz0

(
z′

0|z� z′
1

)
rz1

(
z′

1|z
)
dμz0

(
z′

0

)
dμz1

(
z′

1

)
=

∫
Z1

∫
Z0

1B

[
z′

1� g(z�z′
1�α

n)

(
z′

0

)]
rz0

(
z′

0|z� z′
1

)
rz1

(
z′

1|z
)
dμz0

(
z′

0

)
dμz1

(
z′

1

)
=

∫
Z1

∫
K̄(z�z′1�αn)

1B

[
z′

1�κ
′]rκ(κ′|z� z′

1�α
n
)
rz1

(
z′

1|z
)
dμκ

(
κ′)dμz1

(
z′

1

)
=

∫
Z1

∫
K
1B

[
z′

1�κ
′�

]
rκ

(
κ′|z� z′

1�α
n
)
rz1

(
z′

1|z
)
dμκ

(
κ′)dμz1

(
z′

1

)
=

∫
B

rκ
(
κ′|z� z′

1�α
n
)
rz1

(
z′

1|z
)
dμκ

(
κ′)dμz1

(
z′

1

)
�

where we used Fubini’s theorem for the first equality and the change of variables theorem
for the third equality. Since (fh(·� z′

1))h∈H is a C1-diffeomorphism, denoting by ∂Z0 the
topological boundary of Z0, the set (fh(∂Z0� z

′
1))h∈H is of measure zero and it follows that

rκ(κ
′|z� z′

1�α
n) → rκ(κ

′|z� z′
1�α

0) for almost all κ′. By Scheffe’s lemma, we then obtain
norm-continuity.

For all (s�α), the marginal distribution of Q(·|s�α) on S is absolutely continuous with
respect to the product measure η = μκ × μz1 and has a Radon–Nikodym derivative
qs(z

′
1�κ

′|s�α)= rκ(κ
′|z� z′

1�α)rz1(z
′
1|z). Defining the measure λ(·) by

λ(B) =
∫

S

∫
Z2

1B[s� z2]rz2(z2|z1)dμz2(z2)dη(s)

and taking G = S ⊗ {∅�Z2}, Assumption 5 together with Proposition 2 in He and Sun
(2017) then implies that Q(·|s�α) satisfies Assumptions 3(2) and (3). Q.E.D.

PROOF OF PROPOSITION 4: Define

Ξ =
{
α ∈RH

+ :
(
αhfK

(
z′�

∑
i

αi

)
+ lh

(
z′)fL(z′�

∑
i

αi

))
h∈H

∈ K for all z′ ∈ Z
}
�

Our definition of K implies that, for any sequence of κ(zt) ∈ K, each individual’s budget-
feasible consumption must be bounded above and hence there is a lower bound m > 0
on each individual’s marginal utility. Moreover, for any such sequence, an individual will
have income bounded away from zero, and by the same argument as in Section 3, there



RECURSIVE EQUILIBRIA IN DYNAMIC ECONOMIES 1497

is an upper bound on marginal utility, which we denote by m̄. As in Proposition 1, we can
characterize competitive equilibrium by marginal utilities.12 For this, let M̃ be the set of
functions in Lm

∞ that are essentially bounded below by m. Given any M̄ = (M̄1� � � � � M̄H) ∈
M̃, we define

EM̄
h

(
s� ch�αh�α

∗) = uh(z� ch)+ δEs

[
M̄h

(
s′)fK(

z′�
∑
i∈H

α∗
i

)
αh

]
(18)

with

s′ =
(
z′�

(
α∗
hfK

(
z′�

∑
i

α∗
i

)
+ lh

(
z′)fL(

z′�
∑
i

α∗
i

))
h∈H

)
�

Proposition 1 then implies that a recursive equilibrium exists if there are functions M̄ :
S → RH

+ , M̄ ∈ M̃, such that, for each s = (z�κ) ∈ S, there are choices (c̄h� ᾱh) for each
agent h ∈ H with ᾱ ∈ Ξ, M̄h(s) = u′

h(z� c̄h), and

(c̄h� ᾱh) ∈ arg max
ch∈R++�αh∈R+

EM̄
h (s� ch�αh� ᾱ)

(19)
s.t. c − κh + αh ≤ 0�

As above, the exogenous transition probability P implies a transition probability
Q(·|s�α) on S . Under Assumptions 4(1), (2), and 11, Lemma 1 holds as in Section 3.
We define

PM̄(s) = {(
u′
h(z� c̄h)

)
h∈H

: ∃ᾱ ∈ Ξ such that (c̄h� ᾱh) solves (19) for each h
}
�

While this correspondence is not guaranteed to be non-empty-valued, we can define Pco
M̄

by requiring Pco
M̄
(s) = conv(PM̄(s)) for all s ∈ S. Let R(M̄) be the set of (equivalence

classes of) measurable selections of PM̄ , and Rco(M̄) the set of measurable selections
of Pco

M̄
. Note that for any M ⊂ M̃, this defines a (possibly empty-valued) correspondence

Rco : M ⇒Lm
∞. As in Lemma 3 for each M̄ ∈ M̃, the correspondence PM̄(s) is measurable.

To show that there exists a (non-empty) convex and weak* compact set M∗ ⊂ M̃ such
that Rco(M̄) is non-empty and Rco(M̄) ⊂ M∗ for all M̄ ∈ M∗, define a weak* compact and
convex set

M0 =
{
M ∈ Lm

∞ : 1
2
m ≤Mh ≤ 2m̄ a.s. for all h ∈ H

}
�

For any set M ⊂ M̃, define a correspondence s⇒ Pco
M(s) by

Pco
M(s) = conv

( ⋃
M∈M

PM(s)

)
�

and denote by Rco(M) the set of measurable selections of Pco
M . We construct the set M∗

inductively by defining, for i = 0�1�2� � � � � Mi+1 = Rco(Mi) ∩ M0. Note that by the con-
struction of Mi and by Lemma 4, any element of Mi consists of equilibrium marginal util-
ities for an artificial (i + 1)-period economy where, in the last period, agents have some

12In this setting, we could equivalently use agents’ investment policies instead of marginal utilities as the
unknown functions. However, in the general setting above, with several goods and several types of capital, this
is no longer an option.
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bounded continuation utility M0 ∈ M0. Defining, for each h = 1� � � � �H, M0
h = u′

h(z�κh),
it follows from Assumption 10 that PM0(s) is non-empty for every s and therefore, using
Lemma 4, it follows that Rco(M0) is non-empty. Moreover, it is clear from the construction
of M0 that whenever M1 ∈ Rco(M0), we must have M1 ∈ M0. Therefore, M1 is non-empty.
From the same argument, it follows that there is some M2 ∈ Rco(M1) with M2 ∈ M0 and
recursively that, for each i, there is Mi ∈ Rco(Mi−1) with Mi ∈ M0. Therefore, each Mi is
non-empty. Obviously, each Mi is also convex. By the same argument as in the proof of
Lemma 3, each Mi is weak* compact. Obviously, we have M1 ⊂ M0, and if Mi ⊂ Mi−1,
it must follow that Mi+1 ⊂ Mi. Therefore, we must have for any i = 0�1� � � � that, for all
M ∈ Mi,

Rco(M)∩ M0 ⊂ Mi�

Assumptions 8–10, together with discounting, guarantee that for T sufficiently large,
Rco(M) must be non-empty for all M ∈ MT , and if M̄ ∈ Rco(M), then M̄ ∈ M0. Therefore,
we can take M∗ = MT . Having constructed a set M∗ on which PM(s) is non-empty-valued
for all s, the rest of the proof is identical to the proof of Proposition 2. Q.E.D.
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