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Abstract

In this paper we prove the existence of recursive equilibria in a dynamic stochastic model with

infinitely lived heterogeneous agents, several commodities, and general inter- and intra-temporal

production. We illustrate the usefulness of our result by providing sufficient conditions for the

existence of recursive equilibria in heterogeneous agent versions of both the Lucas asset pricing

model and the neoclassical stochastic growth model.
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1 Introduction

The use of so-called recursive equilibria to analyze dynamic stochastic general equilibrium models

has become increasingly important in financial economics, in macroeconomics, and in public finance.

These equilibria are characterized by a pair of functions: a transition function mapping this period’s

“state” into probability distributions over next period’s state, and a “policy function” mapping the

current state into current prices and choices (see, e.g., Ljungquist and Sargent (2004) for an intro-

duction). In applications that consider dynamic stochastic economies with heterogeneous agents

and production, it is typically the current exogenous shock together with the capital stock and the

beginning-of-period distribution of assets across individuals that define this recursive state. We will

refer to recursive equilibria with this minimal “natural” state space simply as recursive equilibria,

or—following the terminology of stochastic games—as stationary Markov equilibria. Unfortunately,

for models with infinitely lived agents and incomplete financial markets no sufficient conditions for

the existence of these stationary Markov equilibria can be found in the existing literature. In this

paper we close this gap in the literature and prove the existence of recursive equilibria for a general

class of stochastic dynamic economies with heterogeneous agents and production. To do so, we

assume that there are two atomless shocks that are stochastically independent (conditional on a

possible third shock that can be arbitrary). The first shock is purely transitory and only affects

fundamentals that influence the endogenous state, while the second does not affect these fundamen-

tals. We illustrate the usefulness of our results by providing sufficient conditions for the existence

of recursive equilibria in heterogeneous agent versions of both the Lucas asset pricing model and

the neoclassical stochastic growth model.

There are a variety of reasons for focusing on stationary Markov equilibria. Most importantly,

recursive methods can be used to approximate stationary Markov equilibria numerically. Heaton and

Lucas (1996), Krusell and Smith (1998), and Kubler and Schmedders (2003) are early examples of

papers that approximate stationary Markov equilibria in models with infinitely lived, heterogeneous

agents. Although an existence theorem for stationary Markov equilibria has not been available, ap-

plied research—even if explicitly aware of the problem—needs to focus on such equilibria, as there

are no efficient algorithms for the computation of non-recursive equilibria.1 For the case of dynamic

games, Maskin and Tirole (2001) list several conceptual arguments in favor of stationary Markov

equilibria. Duffie et al. (1994) give similar arguments that also apply to dynamic general equilibrium

models: As prices vary across date events in a dynamic stochastic market economy, it is important

that the price process is simple—for instance, Markovian on some minimal state space—to justify

the assumption that agents have rational expectations.
1While Feng et al. (2013) provide an algorithm for this case, their method can only be used for very small-scale

models.
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Unfortunately, due to the non-uniqueness of continuation equilibria, stationary Markov equilibria

do not always exist. This problem was first illustrated by Hellwig (1983) and since then has been

demonstrated in different contexts. Kubler and Schmedders (2002) give an example showing the

nonexistence of stationary Markov equilibria in models with incomplete asset markets and infinitely

lived agents. Santos (2002) provides examples of nonexistence for economies with externalities.

Kubler and Polemarchakis (2004) present such examples for overlapping generations (OLG) models,

one of which we modify to fit our framework with infinitely lived agents and production, thereby

demonstrating the possibility of nonexistence and motivating our analysis.

The existence of competitive equilibria for general Markovian exchange economies is shown in

Duffie et al. (1994). The authors also prove that the equilibrium process is a stationary Markov

process. However, we follow the well established terminology in dynamic games and do not refer

to these equilibria as stationary Markov equilibria, because the state also contains consumption

choices and prices from the previous period.

Citanna and Siconolfi (2010 and 2012) provide sufficient conditions for the generic existence of

stationary Markov equilibria in OLG models. However, their arguments cannot be extended to

models with infinitely lived agents or to models with occasionally binding constraints on agents’

choices, and for their argument to work in their OLG framework they need to assume a very large

number of heterogeneous agents within each generation.

Duggan (2012) and He and Sun (2017) give sufficient conditions for the existence of stationary

Markov equilibria in stochastic games with uncountable state spaces. Building on work by Nowak

and Raghavan (1992), He and Sun (2017) use a result from Dynkin and Evstigneev (1977) to pro-

vide sufficient conditions for the convexity of the conditional expectation operator. They show that

the assumption of a public coordination device (“sunspot”) in Nowak and Raghavan (1992) can be

generalized to natural assumptions on the exogenous shock to fundamentals.

To show the existence of a recursive equilibrium, we characterize it by a function that maps

the recursive state into the marginal utilities of all agents. Our first proposition shows that such

a function describes a recursive equilibrium if it is a fixed point of an operator that captures the

period-to-period equilibrium conditions. Using this characterization, we proceed in two steps to

prove the existence of a recursive equilibrium. First, we make direct assumptions on the function

that maps the current recursive state and current actions into the probability distribution of next

period’s recursive state. Assuming that this function varies continuously with current actions (a

“norm-continuous” transition), the operator defined by the equilibrium conditions is a non-empty

correspondence on the space of marginal utility functions. Unfortunately, the Fan–Glicksberg fixed-

point theorem only guarantees the existence of a fixed point in the convex hull of this correspondence.
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However, following He and Sun (2017) we give conditions that ensure that this is also a fixed point

of the original correspondence. For this, we assume that the density of the transition probability is

measurable with respect to a sigma algebra that is sufficiently coarse relative to the sigma algebra

representing the total information available to agents. This establishes Proposition 2, which provides

a first set of sufficient conditions for the existence of recursive equilibria. In a second step, we provide

concrete assumptions on the stochastic process of exogenous shocks; assumptions that guarantee

that the conditions of Proposition 2 are indeed satisfied. In particular, we assume that the shock

process driving fundamentals contains, in addition to a possible main component that is not subject

to specific assumptions, two components that both have an atomless distribution—the transition

component and the noise component. The transition component is purely transitory and only affects

fundamentals that influence the endogenous state. The noise component, in contrast, does not

affect these fundamentals and is, conditional on the main component, independent of the transition

component and of the previous period’s shocks. Theorem 1 states that under these assumptions a

recursive equilibrium exists.

We apply our result to two concrete models used frequently in macroeconomics and finance. We

first prove the existence of a recursive equilibrium for a heterogeneous agent version of the Lucas

(1978) asset pricing model with displacement risk. Second, we prove existence in a version of the

Brock and Mirman (1972) stochastic growth model with inelastic labor supply and heterogeneous

agents.

We present our main result and our two applications for models without short-lived financial

assets—this makes the argument simpler and highlights the economic assumptions necessary for

our existence result. As an extension, we introduce financial securities together with collateral con-

straints. In order to define a compact endogenous state space we need to make relatively strong

assumptions on endowments and preferences, and to impose constraints on trades. It is subject to

further investigation whether these assumptions can be relaxed. While it is well understood that

without occasionally binding constraints on trade the existence of a recursive equilibrium cannot

be established (see, e.g., Krebs (2004)), the assumptions made in this paper are certainly stronger

than needed.

In a stationary Markov equilibrium the relevant state space consists of both endogenous and

exogenous variables that are payoff-relevant,2 predetermined, and sufficient for the optimization of

individuals at every date event. There are several computational approaches that use individuals’

“Negishi weights” as an endogenous state instead of the distribution of assets (see, e.g., Dumas

and Lyasoff (2012) or Brumm and Kubler (2014)). Brumm and Kubler (2014) prove existence in a

model with overlapping generations, complete financial markets, and borrowing constraints, but the
2Maskin and Tirole (2001) give a formal definition of payoff-relevant states for Markov equilibria in games.
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approach does not extend to models with incomplete markets. In this paper we focus on equilibria

that are recursive on the “natural” state space—that is to say, the space consisting of the exogenous

shock and the asset holdings of all agents.

The rest of the paper is organized as follows: Section 2 presents the general model and gives an

example in which no recursive equilibrium exists. Section 3 provides our existence theorem. Section

4 presents two applications. Detailed proofs can be found in the appendix.

2 A general dynamic Markovian economy

In this section we describe the economic model and define recursive equilibrium. While we consider

an abstract and general model of a production economy, there are two special cases of the model

that play an important role in practice. In the first, a heterogeneous agent version of the Lucas

(1978) asset pricing model, agents trade in several long-lived assets that are in unit net supply

and pay exogenous positive dividends in terms of the single consumption good. In the second, a

version of the Brock–Mirman stochastic growth model with heterogeneous agents, there is a single

capital good that can be used in intraperiod production, together with labor, to produce the single

consumption good. This good can be consumed or stored in a linear technology yielding one unit

of the capital good in the subsequent period. We show in Section 4 how our general existence proof

can be used to provide sufficient conditions for existence of recursive equilibria in versions of these

two models.

2.1 The model

Time is indexed by t P N0. Exogenous shocks zt realize in a complete, separable metric space Z, and

follow a first-order Markov process with transition probability Pp.|zq defined on the Borel σ-algebra

Z on Z—that is, P : Z ˆ Z Ñ r0, 1s. Let pztq8t“0, or in short pztq, denote this stochastic process

and let pFtq denote its natural filtration (i.e., the smallest filtration such that pztq is Ft-adapted).

A history of shocks up to some date t is denoted by zt “ pz0, z1, . . . , ztq and called a date event.

Whenever convenient, we simply use t instead of zt.

We consider a production economy with infinitely lived agents. There are H types of agents,

h P H “ t1, . . . ,Hu. At each date event there are L perishable commodities, l P L “ t1, ..., Lu,

available for consumption and production. The individual endowments are denoted by ωhpztq P RL`
and we assume that they are time-invariant and measurable functions of the current shock. We

take the consumption space to be the space of Ft-adapted and essentially bounded processes. Each

agent h has a time-separable expected utility function

Uhppxh,tq
8
t“0q “ E0

«

8
ÿ

t“0

δtuh pzt, xh,tq

ff

,
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where δ P R is the discount factor, xh,t P RL` denotes the agent’s (stochastic) consumption at date

t, and pxh,tq8t“0 denotes the agent’s entire consumption process.

It is useful to distinguish between intertemporal and intraperiod production. Intraperiod pro-

duction is characterized by a measurable correspondence Y : Z Ñ RL, where a production plan

y P RL is feasible at shock z if y P Ypzq. For simplicity (and without loss of generality) we assume

throughout that each Ypzq exhibits constant returns to scale so that ownership does not need to

be specified.

Intertemporally each type h “ 1, ...,H has access to J linear storage technologies, j P J “

t1, ..., Ju. At a node z each technology ph, jq is described by a column vector of inputs a0
hjpzq P RL`,

and a vector-valued random variable of outputs in the subsequent period, a1
hjpz

1q P RL`, z1 P Z. We

write A0
hpzq “ pa

0
h1pzq, . . . , a

0
hJpzqq for the LˆJ matrix of inputs and A1

hpz
1q “ pa1

h1pz
1q, . . . , a1

hJpz
1qq

for the L ˆ J matrix of outputs. We denote by αhpztq “ pαh1pz
tq, ..., αhJpz

tqqJ P RJ` the levels at

which the linear technologies are operated at node zt by agent h.

Each period there are complete spot markets for the L commodities; we denote prices by ppztq “

pp1pz
tq, ..., pLpz

tqq, a row vector. For what follows it will be useful to define the set of stored

commodities (or “capital goods”) to be

LK “ tl P L :
ÿ

hPH

ÿ

jPJ

a1
hjlpzq ą 0 for some z P Zu,

and to define KU “ tx P RHL` : xhl “ 0 whenever l R LK , h P Hu. We decompose individual

endowments into capital goods, fh, and consumption goods, eh, and define

fhlpzq “

$

&

%

ωhlpzq if l P LK

0 otherwise,

and ehpzq “ ωhpzq ´ fhpzq.

At t “ 0 agents have some initial endowment in the capital goods that might be larger than

fhpz0q and to simplify notation we write the difference as A1
hpz0qαhpz

´1q for each agent h.

Given initial conditions pfhpz0q ` A1
hpz0qαhpz

´1qqhPH P KU , we define a sequential competitive

equilibrium to be a process of Ft-adapted prices and choices,

`

p̄t, px̄h,t, ᾱh,tqhPH , ȳt
˘8

t“0
,

such that markets clear and agents optimize—that is to say, (A), (B), and (C) hold.

(A) Market clearing:

ÿ

hPH

px̄hpz
tq `A0

hpztqᾱhpz
tq ´ ωhpztq ´A

1
hpztqᾱhpz

t´1qq “ ȳpztq, for all zt.

(B) Profit maximization:

ȳpztq P arg max
yPYpztq

p̄pztq ¨ y.
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(C) Each agent h P H maximizes utility:

px̄h,t, ᾱh,tq
8
t“0 P arg max

pxh,t,αh,tq
8
t“0ě0

Uhppxh,tq
8
t“0q

s.t. p̄pztq ¨
`

xhpz
tq `A0

hpztqαhpz
tq ´ ωhpztq ´A

1
hpztqαhpz

t´1q
˘

ď 0, for all zt.

2.2 Recursive equilibrium

We take as an endogenous state variable the beginning-of-period holdings in capital goods, obtained

from storage and as endowments. We fix an endogenous state space K Ă KU and take S “ ZˆK.

A recursive equilibrium consists of “policy” and “pricing” functions

Fα : S Ñ RHJ` , Fx : S Ñ RHL` , Fp : S Ñ ∆L´1

such that for all initial shocks z0 P Z, and all initial conditions
`

A1
hpz0qαhpz

´1q ` fhpz0q
˘

hPH
P K,

there exists a competitive equilibrium

`

p̄t, px̄h,t, ᾱh,tqhPH , ȳt
˘8

t“0

such that for all zt

spztq “
`

zt,
`

A1
hpztqᾱhpz

t´1q ` fhpztq
˘

hPH

˘

P ZˆK

and p̄pztq “ Fppspz
tqq, x̄pztq “ Fxpspz

tqq, ᾱpztq “ Fαpspz
tqq.

For computational convenience one typically wants K to be convex—this will be guaranteed

in our existence proof below but for now we do not include the requirement in the definition of

recursive equilibrium. Note also that we chose the endogenous state space K to be a subset of KU ,

where KU represents the holding of broadly defined capital goods LK . At the cost of notational

inconvenience one could define capital goods and the space of capital holdings agent-wise by

LKh “ tl P L :
ÿ

jPJ

a1
hjlpzq ą 0u, KU

h “ tx P RHL` : xl “ 0 whenever l R LKh u.

The endogenous state space would then satisfy K Ă
Ś

hPH KU
h , which could be considerably smaller

than in the above definition, depending on the application. Similarly, one could make the space of

capital holdings depend on the shock z P Z.

2.3 Possible nonexistence

Before we turn to our existence proof in Section 3, we now provide an example that illustrates

why recursive equilibria may fail to exist. The example is inspired by Kubler and Polemarchakis

(2004) and has the advantage that it can be analyzed analytically and all calculations are extremely

simple.3 In this example, agents make the same storage decisions in two different exogenous states.
3Kubler and Polemarchakis (2004) provide a second example where preferences and endowments are more standard,

but we would need tools from computational algebraic geometry to analyze it and the basic point can be illustrated

well in the simpler setup.
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Yet these decisions are only consistent with intertemporal optimization because expectations about

the next period’s prices differ. Therefore, equilibrium prices are not only a function of capital

holdings, but also of the previous period’s exogenous state. Thus, an equilibrium that is recursive

in the natural state does not exist.

The details of the example are as follows. We assume that there are only three possible shock

realizations, z1 P t1, 2, 3u, which are independent of the current shock and equiprobable, thus

πpz1|zq “ 1{3 for all z, z1 P t1, 2, 3u. There are two commodities and two types of agent. As

in Section 2.1, we assume that each agent maximizes time-separable expected utility, and to make

computations simple we assume δ “ 1{2. Each agent has access to one storage technology.4 Agent

1’s technology transforms one unit of commodity 1 at given shocks z “ 1 and z “ 2 to one unit of

commodity 1 in the subsequent period whenever shock 3 occurs. Agent 2’s technology transforms

one unit of commodity 2 at given shocks z “ 1 and z “ 2 to one unit of commodity 2 in the

subsequent period whenever shock 3 occurs. At shock z “ 3 no storage technology is available.5 All

in all, we have

a0
1p1q “ a0

1p2q “ p1, 0q, a
0
1p3q “ 8, a0

2p1q “ a0
2p2q “ p0, 1q, a

0
2p3q “ 8

a1
1p1q “ a1

1p2q “ 0, a1
1p3q “ p1, 0q, a1

2p1q “ a1
2p2q “ 0, a1

2p3q “ p0, 1q.

We assume that the Bernoulli utility functions of agents 1 and 2 are as follows:

u1pz “ 1, px1, x2qq “ u1pz “ 2, xq “ ´
1

6x1
, u1pz “ 3, xq “ ´

1

x1
` x2,

u2pz “ 1, px1, x2qq “ u2pz “ 2, xq “ ´
1

6x2
, u2pz “ 3, xq “ x1 ´

1

x2
.

Endowments of agents of type 1 are

ω1pz “ 1q “ pω11p1q, ω12p1qq “ p2, 0q, ω1pz “ 2q “ p0.1, 0q, ω1pz “ 3q “ p0, 2q,

and endowments of agents of type 2 are

ω2pz “ 1q “ p0, 0.1q, ω2pz “ 2q “ p0, 2q, ω2pz “ 3q “ p2, 0q.

For simplicity we set up the example completely symmetrically. In shocks 1 and 2, agent 1 only

derives utility from consumption of good 1 and is only endowed with good 1, agent 2 only derives

utility from good 2 and is only endowed with this good.

It is easy to see that at shocks 1 and 2 there will never be any trade. By assumption, if shock

3 occurs there cannot be any storage. Therefore, the economy decomposes into one-period and
4To simplify notation we assume that each agent has his or her own technology but given our assumptions on

endowments, below, it would be equivalent to assume that each agent has access to both technologies.
5The assumption is made for convenience—all one needs is productivity low enough to guarantee that the tech-

nology is not used. In a slight abuse of notation we write a0
hp3q “ 8.
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two-period “sub-economies”. The only non-trivial case is when shock 3 is preceded by either shock 1

or 2. In these two-period economies, agents make a savings decision in the first period and interact

in spot markets in the second period.

To analyze the equilibria in these two-period economies, it is useful to compute the individual

demands in the second period in shock 3 as functions of the price ratio p̃ “ p2pz1“3q
p1pz1“3q given amounts

of commodity 1 obtained by agent 1’s storage, κ1, and amounts of commodity 2 obtained by agent

2’s storage, κ2. We obtain for agent 1,

x1pp̃|κq “

$

&

%

pp̃ω12p3q ` κ1, 0q for p̃ω12p3q ´
?
p̃` κ1 ď 0

p
?
p̃, ω12p3q ´

1?
p̃
` κ1

p̃ q otherwise,

and, symmetrically for agent 2,

x2pp̃|κq “

$

&

%

p0, ω21p3q
p̃ ` κ2q for ω21p3q ´

?
p̃` p̃κ2 ď 0

pω21p3q ´
?
p̃` p̃κ2,

1?
p̃
q otherwise.

We note first that, in equilibrium, agent 2 never stores in shock 1 and agent 1 never stores in shock

2. To see this, observe that agent 2 stores in shock 1 only if his or her consumption in good 2 in the

subsequent shock 3 is below 0.1. However, x2pp̃|κq ď 0.1 and κ ě 0 implies ω21p3q{p̃ ď 0.1, thus the

(relative) price of good 2, p̃, must be at least 20. But then agent 1’s consumption of good 1 must

be at least
?

20, which violates feasibility. Therefore there cannot be an equilibrium where agent 2

stores in shock 1. The situation for shock 2 is completely symmetric—agent 1 will never store in

this shock.

We now consider a two-period economy with the initial shock equal to 1 where agent 2 does

not store—that is, κ2 “ 0. If also κ1 “ 0, then the equilibrium conditions for the second period

spot market have a continuum of solutions: any p̃ satisfying ω12p3q
´2 “ 1{4 ď p̃ ď ω21p3q

2 “ 4 is

a possible spot market equilibrium. However, we now show that in the two-period economy only

p̃ “ 4 is consistent with agent 1’s intertemporal optimization. For p̃ “ 4, agent 1’s consumption at

shock 3 is given by x1pz
1 “ 3q “ p2, 1.5q. If agent 1’s consumption in good 1 drops below 2, he or she

will always store positive amounts, and by feasibility it cannot be above 2 without storage. To see

that this equilibrium is unique, first observe that there cannot be another equilibrium with identical

consumption for agent 1 in good 1. To see that there cannot be an equilibrium with κ1 ą 0, observe

that for κ1 ą 0 the only possible spot equilibrium would have x11 “ 2 ` κ1. However, the Euler

equation implies that κ1 ą 0 is then inconsistent with intertemporal optimality. When the economy

starts in shock 2, the situation is completely symmetric, with only one possible equilibrium with

κ1 “ κ2 “ 0, p̃ “ 1
4 and agent 1’s consumption given by x1pz

1 “ 3q “ p0.5, 0q.

Thus, in every competitive equilibrium we have κ1 “ κ2 “ 0 and consumption and prices in

shock 3 differ depending on whether the realization of the previous shock was 1 or 2. Therefore,

there is no recursive equilibrium.
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Clearly, the counterexample relies crucially on the fact that given κ1 “ κ2 “ 0 there are sev-

eral possible continuation equilibria. As Kubler and Schmedders (2002) point out, the assumption

of uniqueness of competitive equilibria for all possible initial conditions ensures the existence of a

recursive equilibrium. However, this assumption is highly unreasonable. For models with infinitely

lived agents and incomplete financial markets no assumptions are known that guarantee uniqueness.

Ever since Kehoe (1985) it has been well known that, even for the static Arrow–Debreu model with

production, conditions that guarantee uniqueness of equilibria are too restrictive to have much ap-

plicability. Moreover, none of these conditions extend to dynamic stochastic models with incomplete

markets. Therefore, we do not try to find conditions that rule out multiple equilibria. Instead, our

strategy is to find conditions that ensure, in the presence of multiple equilibria, that there is at least

one equilibrium that is recursive in the natural state.

3 Existence

In this section we prove the existence of a recursive equilibrium for the general model presented in

Section 2. Section 3.1 shows how to characterize recursive equilibrium via marginal utility functions.

Section 3.2 proves existence making direct assumptions on the transition probability for the recursive

state. Assumptions on the economic fundamentals which guarantee that these conditions hold are

provided in Section 3.3. In Section 3.4 we outline how our results can be extended to allow for

financial assets.

3.1 Characterizing recursive equilibria

We now characterize recursive equilibrium via a function that maps the recursive state into marginal

utilities of all agents. We show that such a function describes a recursive equilibrium if it is a fixed

point of an operator that captures the period-to-period equilibrium conditions.

Since we consider an economy with several commodities we want to allow for the fact that some

commodities do not enter the utility functions of agents and some commodities, although their

consumption provides utility, are not essential in that an agent might decide to consume zero of

that commodity. Nevertheless, we need to assume that there is at least one commodity that is

essential in the sense that independently of prices an agent will always consume positive amounts of

that commodity. For simplicity we take the consumption space to be C “ R`` ˆ RL´1
` , assuming

that utility and marginal utility are well defined even if consumption of goods 2, . . . , L are on the

boundary. It is straightforward to amend our proofs and to allow for additional Inada conditions

for some, or all, of the commodities 2, . . . , L.

We make the following assumption on preferences and endowments:

Assumption 1
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1. Individual endowments in good 1 and aggregate endowments in all other goods are bounded above

and bounded below away from zero—that is, there are ω, ω P R`` such that for all shocks z

ω ă ωh1pzq ă ω for all agents h,

ω ă
1

H

ÿ

hPH

ωhlpzq ă ω for all goods l “ 2, . . . , L.

2. The agents’ discount factor satisfies δ P p0, 1q.

3. The Bernoulli functions uh : Z ˆ C Ñ R, h P H, are measurable in z, they are increas-

ing, concave, and continuously differentiable in x, they are strictly increasing and strictly con-

cave in x1, and they satisfy a strong Inada condition: for any sequence xn1 Ñ 0, we have

supzPZ,px2,...,xLqPRL´1
`

uhpz, px
n
1 , x2, . . . , xLqq Ñ ´8. Utility is bounded above: there exists a

ū such that uhpz, xq ď ū for all h P H, z P Z, x P C.

The assumption on utility seems strong but it is a direct generalization of the assumptions in Duffie et

al. (1994) to an economy with several commodities and continuous shocks. In specific applications,

the assumption that individual endowments are strictly positive in the “essential” commodity, good

1, and the assumption that aggregate endowments are positive in all goods can be replaced by

alternative assumptions, as we discuss in Section 4.2.

As in Duffie et al. (1994), Assumption 1 implies that there is a c ą 0 such that, independently

of prices, an agent will never choose consumption in commodity 1 that is below c. The reason is

that budget feasibility implies that an agent can always consume his or her endowments (the agent

cannot sell them on financial markets in advance), and we therefore must have, for any shock z and

for any x with x1 ă c,

uhpz, xq `
δu

1´ δ
ă

1

1´ δ
inf
zPZ

uhpz, xq,

where ū is the upper bound on Bernoulli utility and x1 “ ω, xl “ 0, l “ 2, . . . , L.

The lower bound on consumption implies an upper bound on marginal utility, which we define by6

m̄ “ max
hPH

sup
xPRL`,x1ěc{2,zPZ

Buhpz, xq

Bx1
. (1)

We make the following assumptions on production possibilities:

Assumption 2 For each shock z the production set Ypzq Ă RL is assumed to be closed, convex-

valued, to contain RL´, to exhibit constant returns to scale—that is, y P Ypzq ñ λy P Ypzq for all

λ ě 0, and to satisfy Ypzq X ´Ypzq “ t0u. In addition, production is bounded above: There is a

κ̄ P R` so that for all κ P KU , h P H, z P Z, l P LK , and for all α P RHJ`
ÿ

hPH

`

A0
hpzqαh ´ κh ´ ehpzq

˘

P Ypzq ñ sup
z1

ÿ

hPH

pfhlpz
1q `

ÿ

jPJ

a1
hjlpz

1qαhjq ď maxrκ̄,
ÿ

hPH

κhls.

6In our results below we will often require that variables are actually bounded away from some lower (or upper)

bound b (or b̄). In order to ensure this, we take a known bound a (or ā) in R`` and define b “ a{2 (b̄ “ 2ā).
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While the first part of Assumption 2 is standard, the second part is a strong assumption on the

interplay of intra- and inter-period production. For each capital good, the economy can never grow

above κ̄ when starting below that limit. The assumption is made for convenience and ensures

boundedness of consumption. In specific applications stronger assumptions on the correspondence

Yp.q can lead to a relaxation of the second part of Assumption 2 (see Section 4.2 below).

We define

K “ tκ P KU : Hω ď
ÿ

hPH

κhl ď κ̄ for all l P LK ; if 1 P LK , κh1 ě ω for all h P Hu (2)

and take the state space to be S “ Z ˆK with Borel σ-algebra S. We define Ξ to be the set of

storage decisions across agents, α, that ensure that next period’s endogenous state lies in K:

Ξ “ tα P RHJ` :
`

fhpz
1q `A1

hpz
1qαh

˘

hPH
P K for all z1 P Zu. (3)

The following proposition gives a characterization of recursive equilibria that is at the heart of

our existence proof below.

Proposition 1 Suppose Assumptions 1 and 2 hold. Then a recursive equilibrium exists if there are

bounded functions M : S Ñ RHL` such that for each s “ pz, κq P S there exist prices p̄ P ∆L´1, p̄1 ą 0,

production plans ȳ P Ypzq, and choices tpx̄h, ᾱhqhPH with ᾱ P Ξ such that for each h P H ,

Mh1psq “
Buhpz, x̄hq

Bx1
, Mhlpsq “Mh1psq

p̄l
p̄1
, l “ 2, . . . , L

and

px̄h, ᾱhq P arg max
xhPC,αhPRJ`

uhpz, xhq ` δEs
“

Mhps
1qA1

hpz
1qαh

‰

s.t. (4)

´p̄ ¨ pxh `A
0
hpzqαh ´ κh ´ ehpzqq ě 0,

where

s1 “
`

z1,
`

A1
hpz

1qᾱh ` fhpz
1q
˘

hPH

˘

,

production plans are optimal,

ȳ P arg max
yPYpzq

p̄ ¨ y,

and markets clear,
ÿ

hPH

px̄h `A
0
hpzqᾱh ´ ehpzq ´ κhq “ ȳ.

The key idea of this proposition is that the first order conditions of (4) are identical to the agents’

intertemporal Euler equations. The proof proceeds by showing that these Euler equations are

necessary and sufficient for optimal intertemporal choices. The alternative characterization of a

recursive equilibrium in terms of M -functions provided in Proposition 1 is useful because it allows

us to show existence through a fixed-point argument in the space of these marginal utility functions.
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This strategy of proof is possible as we can (under suitable additional assumptions) show that for any

given measurable and bounded functionMp.q there exist prices and choices satisfying the conditions

in Proposition 1. This is formalized in Lemma 2 below.

3.2 Existence under assumptions on the transition

Using the characterization of recursive equilibrium given in Proposition 1, we now prove its existence

by making direct assumptions on the function that maps the current recursive state and current

actions into the probability distribution of next period’s recursive state. In Section 3.3 we provide

concrete conditions on the exogenous shocks that are sufficient to ensure that these assumptions

hold.

Assuming that the probability distribution of the next period’s state varies continuously with

current actions, we will show that the operator defined by the equilibrium conditions is a non-

empty correspondence on the space of marginal utility functions. By the Fan–Glicksberg fixed-

point theorem this implies the existence of a fixed point of the convex hull of this correspondence.

Making an additional assumption that ensures the presence of “noise” as in Duggan (2012)—the

actual assumption we make is from He and Sun (2017)—we can prove the existence of a recursive

equilibrium. Note that, in general, continuation equilibria will not be unique and our assumptions

imply nothing about their uniqueness. However, Assumptions 3.1 and 3.2 below ensure that there

exists a measurable selection of continuation equilibria whose conditional expectation is a continuous

function of today’s choices. Furthermore, Assumption 3.3 ensures that any measurable selection

of the convex hull of all continuation equilibria is itself a continuation equilibrium. While our

assumptions do not rule out multiple continuation equilibria, they guarantee the existence of a

recursive equilibrium.

To state the assumptions formally, first note that the exogenous transition probability P implies,

given choices α P Ξ, a transition probability Qp.|s, αq on S: given α across all agents, and next

period’s shock z1, the next period’s endogenous state is given by

`

fhpz
1q `A1

hpz
1qαh

˘

hPH
.

To prove the existence of a recursive equilibrium we first make additional assumptions directly on

Q. To state them we need the following definition from He and Sun (2017): Given a measure space

pS,Sq with an atomless probability measure λ and a sub-σ-algebra G, let GB and SB be defined as

tB X B1 : B1 P Gu and tB X B1 : B1 P Su, for any non-negligible set B P S. A set B P S is said to

be a G-atom if λpBq ą 0 and given any B0 P SB, there exists a B1 P GB such that λpB04B1q “ 0.

The following assumptions are from He and Sun (2017)7—in Section 3.3 we give assumptions
7Assumptions 3.1 and 3.2 correspond to the assumptions made by He and Sun (2017) on the transition probability

representing the law of motion of the states. Assumption 3.3 corresponds to their crucial sufficient condition for

existence, called the “coarser transition kernel”.
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on fundamentals that imply Assumption 3 and thereby ensure existence.

Assumption 3

1. For any sequence αn P Ξ with αn Ñ α0 P Ξ,

sup
BPS

|QpB|s, αnq ´QpB|s, α0q| Ñ 0.

2. For all ps, αq, Qp.|s, αq is absolutely continuous with respect to the probability measure λ on pS,Sq

with Radon–Nikodym derivative qp.|s, αq.

3. There is a sub σ-algebra G of S such that S has no G atom and qp.|s, αq and A1p.q are G-measurable

for all s “ pz, κq and all α P Ξ.

The first existence result of this paper is as follows:

Proposition 2 Under Assumptions 1–3 a recursive equilibrium exists.

To prove the result, let Lm8pS,S, λq be the space of essentially bounded and measurable (equiv-

alence classes of) functions from S to Rm with m “ HL. Following Nowak and Raghavan (1992)

and Duggan (2012), we endow Lm8 with the weak* topology σpLm8, Lm1 q. For any b ą 0 the set of

measurable functions that are λ-essentially bounded above by b and below by 0 is then a non-empty,

convex, and weak* compact subset of a locally convex, Hausdorff topological vector space. We de-

note this set by Mb Ă Lm8. Since S is a separable metric space, Lm1 is separable, and consequently

Mb is metrizable in the weak* topology. We define L`8 Ă Lm8 to be the set of functions in Lm8 that

are essentially bounded below by zero. Given any M̄ “ pM̄1, . . . , M̄Hq P L`8, we define

EM̄h ps, xh, αh, α
˚q “ uhpz, xhq ` δEs

”

M̄hps1q ¨A1
hpz

1qαh

ı

(5)

with

s1 “
`

z1,
`

fhpz
1q `A1

hpz
1qα˚h

˘

hPH

˘

.

In the definition of EM̄h , the αh P RJ` stands for the choice of agent h, while α˚ P RHJ` is taken

by individuals as given—in particular its influence on the state transition. Lemma 1 states the

properties of the function EM̄h that we need in Lemma 2.

Lemma 1 Given any M̄ P L`8 and h P H, the function EM̄h p., xh, αh, α
˚q is measurable in s. For given

s, the function is jointly continuous in xh, αh, α˚ and M̄ .

The next lemma is the key result in this subsection and it guarantees the existence of a policy in the

current period that satisfies the equilibrium conditions, given arbitrary, measurable, and bounded

marginal utilities in the subsequent period.8 The key idea is that Lemma 1 implies that the agents’
8In our setup this result plays the same role as the result that there always exists a mixed strategy Nash equilibrium

for the stage game in the stochastic game setup.
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objective functions are continuous and a standard fixed-point argument can be employed to show

the existence of market clearing prices in the current period for any (bounded and measurable)

continuation marginal utility in the subsequent period.

Lemma 2 For each b ą 0 there is an ε ą 0 such that for any M̄ P Mb and all s “ pz, κq P S there exist

x̄ P RHL` , ᾱ P Ξ, ȳ P Ypzq, and p̄ P ∆L´1 with p̄1 ě ε such that

ÿ

hPH

px̄h `A
0
hpzqᾱh ´ ehpzq ´ κhq “ ȳ, (6)

for each agent h

px̄h, ᾱhq P arg max
xhPC,αhPRJ`

EM̄h ps, xh, αh, ᾱq s.t. (7)

´p̄ ¨ pxh ´ ehpzq ´ κh `A
0
hpzqαhq ě 0,

and

ȳ P arg max
yPYpzq

p̄ ¨ y. (8)

For a given M̄ , we define the (consumption) correspondence s Ñ NM̄ psq to contain all ppxhqhPH, pq

such that there exist pαhqhPH P Ξ and y P Ypzq that satisfy Equations (6), (7), and (8). We define

the associated (marginal utility) correspondence s Ñ PM̄ psq by

PM̄ psq “

"ˆ

Buhpz, xhq

Bxh1
,
p2

p1

Buhpz, xhq

Bxh1
, . . . ,

pL
p1

Buhpz, xhq

Bxh1

˙

hPH

: px, pq P NM̄ psq

*

,

and Pco
M̄

by requiring

Pco
M̄ psq “ conv pPM̄ psqq for all s P S,

where convpAq denotes the convex hull of a set A. Let RpM̄q be the set of (equivalence classes of)

measurable selections of PM̄ , and RcopM̄q the set of measurable selections of Pco
M̄
. Note that for

any M Ă Mb this defines a correspondence Rco : M Ñ L`8. In the following, we first establish that

for convex and closed domains M this correspondence has a closed graph and non-empty, convex

values. Then we go on to show that the set M can be chosen to ensure that Rco maps into M and

that a fixed point of this map describes a recursive equilibrium as in Proposition 1. The following

lemma is an important but standard technical result (see, e.g., Nowak and Raghavan (1992)).

Lemma 3 For each M̄ P L`8, the correspondence PM̄ psq is weakly measurable and compact valued,

and for any b ą 0 and any weak* closed and convex M Ă Mb the correspondence Rco : M Ñ Lm8 is

non-empty, convex, weak* closed valued, and has a weak* closed graph.

As explained in the introduction, our existence proof relies on the Fan–Glicksberg fixed-point

theorem, which will guarantee the existence of a fixed point of Rco. In order to deduce from that

the existence of a recursive equilibrium we follow a similar approach as He and Sun (2017).
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Lemma 4 Let F : S Ñ RHL be an integrably bounded and closed valued correspondence and define

Fcopsq “ conv pFpsqq for all s P S. Let Mpsq “ pMh
1 psq, ...,M

h
Lpsqq

H
h“1 be a measurable selection of

Fco. Then there exists an M̂ that is a measurable selection of F such that for all h P H, s P S, α P Ξ
ż

S
Mhps

1qA1
hpz

1qdQps1|s, αq “
ż

S
M̂hps

1qA1
hpz

1qdQps1|s, αq.

For arbitrary Mb the correspondence Rco : Mb Ñ Lm8 does not necessarily map into Mb. The final

lemma of this section establishes the existence of a suitable subset of L`8, which can be used for the

fixed-point argument.

Lemma 5 There exists a convex and weak* compact set M˚ Ă L`8 such that RcopM̄q Ă M˚ for all

M̄ P M˚.

To complete the proof of the existence of a recursive equilibrium—that is to say, the proof of

Proposition 2, recall the statement of the Fan–Glicksberg theorem (see, e.g., Aliprantis and Border

(2006, Theorem 17.55)). Suppose M is a non-empty compact convex subset of a locally convex

Hausdorff topological vector space; then a correspondence M Ñ M has a fixed point if it has closed

graph and non-empty convex values. For M˚ as in Lemma 5, by Lemma 3 and Fan–Glicksberg

fixed-point theorem there exists a M̂ P M˚ such that M̂ P RcopM̂q. By Lemma 4 it is then clear

that for all s, PM̂ psq “ PM˚psq and M˚ must be a S-measurable selection of PM˚psq. Therefore

there exists a bounded function M˚ that satisfies the conditions of Proposition 1 and a recursive

equilibrium exists.

3.3 The existence theorem

So far, we have shown the existence of a recursive equilibrium under Assumptions 1–3. However,

Assumption 3 is not a direct assumption on the fundamentals of the economy, but rather on how

the transition probability for exogenous and endogenous states varies with choices. We now provide

concrete assumptions on the stochastic process of exogenous shocks—assumptions that guarantee

Assumption 3 and thus the existence of a recursive equilibrium.

In particular, we now assume that the space of exogenous shocks can be decomposed into three

complete, separable metric spaces, Z “ Z0 ˆZ1 ˆZ2 with Borel σ-algebra Z “ Z0 bZ1 bZ2, and

the shock is given by z “ pz0, z1, z2q. Moreover, for each i “ 0, 1, 2 there is a measure µzi on Zi and

there are conditional densities rz0pz10|z, z11q, rz1pz11|zq, and rz2pz12|z, z10, z11q such that for any B P Z

we have

PpB|zq “
ż

Z1

ż

Z0

ż

Z2

1Bpz
1qrz2pz

1
2|z, z

1
0, z

1
1qrz0pz

1
0|z, z

1
1qrz1pz

1
1|zqdµz2pz

1
2qdµz0pz

1
0qdµz1pz

1
1q.

To ensure the continuity of the state transition in Assumption 3.1, we assume that the shock z0

is purely transitory, has a continuous density, and only affects agents’ f -endowments. Moreover,
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given z1 and z2, there is a diffeomorphism from Z0 to a subset of K. More precisely, we make the

following assumptions:

Assumption 4

1. z0 is purely transitory—that is, for all z0, ẑ0 P Z0 and all pz1, z2q P Z1 ˆ Z2,

Pp.|z0, z1, z2q “ Pp.|ẑ0, z1, z2q.

2. Z0 is a subset of an Euclidean space, µz0 is Lebesgue, and the density rz0p.|z, z
1
1q is continuous

for almost all pz, z11q.

3. For all pz1, z2q P Z1 ˆ Z2, pfhp., z1, z2qqhPH is a C1-diffeomorphism from Z0 to a subset of K

with a non-empty interior. All other fundamentals are independent of z0—that is, for all h, we

can write ehpzq “ ehpz1, z2q, A0
hpzq “ A0

hpz1, z2q, A1
hpzq “ A1

hpz1, z2q, uhpz, .q “ uhppz1, z2q, .q,

Ypzq “ Ypz1, z2q.

Assumption 4.3. can be slightly relaxed in that we can allow A1
hpzq to depend on z0 if we assume

that for all α ě 0,
`

fhp., z
1
1, z

1
2q `A

1
hp., z

1
1, z

1
2qα

˘

hPH
is a diffeomorphism from Z0 to a subset of RHL.

For simplicity we take A1
hp.q to be independent of z0.

To ensure that the z2 shock gives us convexity in the conditional expectation operator we make the

following assumption:

Assumption 5 Conditionally on next period’s z11, the shock z12 is independent of both z10 and the

current shock z. Conditionally on z11, the measure µz2p.|z
1
1q is absolutely continuous with respect to some

atomless probability measure on Z2 so that we can write the density as rz2pz
1
2|z, z

1
0, z

1
1q “ rz2pz

1
2|z

1
1q.

Moreover, for each agent h, A1
hpzq and fhpzq do not depend on z2.

This construction was first used in Duggan (2012). It is clear that this is a strict generalization of

a “sunspot”. The shock z2 can affect fundamentals peh, uhqhPH and Y in arbitrary ways.

The following is the main result of the paper.

Theorem 1 Under Assumptions 1, 2, 4, and 5 there exists a recursive equilibrium.

To prove the theorem we show that Assumptions 4 and 5 imply Assumption 3 if state transitions

and the state space are reformulated appropriately. It is easy to notice that since the shock z0 is

purely transitory and does not affect any fundamentals except pfhq, the realization of this shock

is reflected in the value of the endogenous state κ and except for the value of κ it is irrelevant for

current endogenous variables and the future evolution of the economy. Therefore, departing slightly

from our previous notation, we take S “ Z1 ˆ Z2 ˆK with Borel σ-algebra S. Furthermore, we
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write S “ Z1 ˆ K for the space that includes only the z1-shock component and the holdings in

capital goods; we denote the Borel σ-algebra on S by S. For each B P S, take

QpB|s, αq “ P
`

tz1 P Z :
`

pz11, z
1
2q, pfhpz

1q `A1
hpz

1qαhqhPH
˘

P Bu|z
˘

.

The following lemma establishes that Assumptions 4 and 5 provide sufficient conditions for Assump-

tion 3 and hence for the existence of a recursive equilibrium.

Lemma 6 Under Assumptions 4 and 5 , Qp.|s, αq satisfies Assumption 3.

The proof of Theorem 1 now follows directly from the argument above—that is to say, the result

follows directly from Proposition 2.

3.4 Financial markets

So far, we have considered the case without trade in one-period financial assets. We now briefly

outline how financial markets can be incorporated into our framework. More precisely, we assume

that agents can trade in financial assets, in addition to undertaking intertemporal storage. There

are D one-period securities, d “ 1, ..., D, in zero net supply, each being characterized by its payoff

bd : Z Ñ RL`, which is a bounded and measurable function of the shock. At each zt, securities are

traded at prices qpztq; we denote an agent’s portfolio by θhpztq P RD.

In order to establish the existence of a recursive equilibrium we need to restrict agents’ portfolio

choices. Let K be defined as in (2) above and Ξ as in (3). Each agent h faces a constraint on trades

in asset markets and storage decisions pα, θq, given by a convex and closed set Θh Ă RJ` ˆ RD,

which satisfies that whenever α P Ξ and pα, θq P Θh then

A1
hpz

1qα`
D
ÿ

d“1

θdbdpz
1q ě 0 for all z1 P Z.

Without loss of generality we assume that trade is possible in all financial securities—that is, for

each d there is an agent h and an α P Ξ so that for some θd ă 0, pα, θq P Θh. Note that collateral

constraints of the form

A1
hpz

1qα`
D
ÿ

d“1

minpθd, 0qbdpz
1q ě 0 for all z1 P Z (9)

are one example of constraints that satisfy our assumption. However, this is a somewhat nonstan-

dard formulation of a collateral constraint since agents cannot borrow against the value of their

future production—they need to borrow against future production directly.

As before, the endogenous state space is given by K. A recursive equilibrium is given by maps

from the state s P S “ ZˆK to prices of commodities and financial securities and to consumption,

investment, and portfolio choices across all agents. The analogous result to above is now as follows:
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A recursive equilibrium exists if there are functions M : S Ñ RHL` such that for each s P S

there exist prices pp̄, q̄q P ∆L`D´1, a production plan ȳ P Ypzq for each agent h, optimal actions

px̄h, ᾱh, θ̄hq with

Mh1psq “
Buhpz, xhq

Bx1
, Mhlpsq “Mh1psq

p̄l
p̄1
, l “ 2, . . . , L

such that

px̄h, ᾱh, θ̄hq P arg max
xPC,pα,θqPΘh

uhpz, xq ` δEs

«

Mhps
1q ¨

˜

ÿ

j

a1
hjpz

1qαj `
ÿ

d

bdpz
1qθd

¸ff

s.t.

´q̄ ¨ θ ´ p̄ ¨ px`A0
hpzqα´ κh ´ ehpzqq ě 0,

where

s1 “

˜

z1,

˜

A1
hpz

1qᾱh `
ÿ

d

θ̄hdbdpz
1q ` fhpz

1q

¸

hPH

¸

,

production plans are optimal,

ȳ P arg max
yPYpzq

p̄ ¨ y,

and markets clear,
ÿ

hPH

px̄h `A
0
hpzqᾱh ´ ehpzq ´ κhq “ ȳ,

and
ÿ

hPH

θ̄h “ 0.

The proof is similar to the proof of Proposition 1.

Assumptions 4.3 and 5 now need to be extended: We assume in addition that for each asset d,

bdpzq is only a function of z1. The definition of the transition probability Q now reads as

QpB|s, α, θq “ P

˜

tz1 P Z : rz11, z
1
2, pfhpz

1q `A1
hpz

1qαh `
ÿ

d

θhdbdpz
1qqhPHs P Bu|z

¸

.

With the additional assumptions, it is easy to see that Lemma 6 holds as stated. The proofs of

Lemmas 1, 3, and 4 are almost identical to those for the case without financial securities. To prove

the analogue of Lemma 2, one can bound the set of admissible portfolios, and proceed as in the

proof of that lemma. To prove the analogue of Lemma 5 it is necessary to make more precise the

constraints subsumed in the set Θ—it is easy to see that the proof of the lemma goes through for

the case of collateral constraints (9).

4 Applications

To illustrate the usefulness of the results obtained in our general model we consider heterogeneous

agent versions of the Lucas (1978) asset pricing model and the Brock and Mirman (1972) stochastic
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growth model. We explain that these models can be analyzed as special cases of our general setup

and provide conditions that ensure the existence of a recursive equilibrium. For the Lucas model

our sufficient conditions for existence are much stronger than in Duffie et al. (1994): We assume

that the Lucas tree holdings are subject to displacement risk9 and that there is an atomless noise

shock that may effect endowments or preferences. For the neoclassical growth model we assume

that shocks to labor-endowments have an i.i.d. component with continuous density and that there is

an atomless noise shock that may affect preferences or convey news about the probability of future

shocks. While our model has similarities to the models in Krusell and Smith (1998) and in Miao

(2006) it is important to note that it differs in two crucial aspects. We assume that there are finitely

many types of agents and we consider a structure of stochastic shocks that is considerably more

complicated than in these paper. In the conclusion of this paper we explain why our method of proof

cannot be used to obtain existence of a recursive equilibrium without such strong assumptions.

4.1 A Lucas asset pricing model with displacement risk

In the heterogeneous agent version of the Lucas (1978) asset pricing model that is examined in

Duffie et al. (1994) there are J Lucas trees available for trade, j P J “ t1, . . . , Ju. These are

long-lived assets in unit net supply that pay exogenous positive dividends in terms of the single

consumption good. Agents can trade in these trees but are not allowed to hold short positions and

there are no other financial securities available for trade. In our setup this amounts to assuming

that there are 2J ` 1 commodities, the first being the consumption good, the next J representing

the old trees, and the last J the new trees; there are J linear, intraperiod production technologies

each using one particular commodity j “ 2, ..., J ` 1 as input, generating the same amount of

commodity j “ J ` 2, ..., 2J ` 1 as output, and also producing some amount of commodity 1.

Finally, in intertemporal production each agent can store each commodity j “ J ` 2, ..., 2J ` 1,

which then yields the same amount of commodity j “ 2, ..., J ` 1 in the next period. Agents

only derive utility from consumption of commodity 1 and have positive state-contingent individual

endowments only in this commodity—except for t “ 0 when agents have initial endowments in

commodities j “ 2, ..., J ` 1 that add up to 1. It is easy to see that a sequential competitive

equilibrium for this version of our model will have the same consumption allocation as a sequential

equilibrium in the heterogeneous agent Lucas model. This exact model, however, does not satisfy

the assumptions needed for Theorem 1, as endowments in the Lucas trees are assumed to be zero.

In contrast, Assumption 4 demands that these endowments are “sufficiently stochastic” to make the

state transition norm-continuous. In the displacement risk model that we now present, endowments

in Lucas trees are stochastic because “new ideas replace old ideas” and thus part of the old Lucas tree
9Modeling the redistributive effects of innovation as “displacement risk” has, in recent years, become popular in

the asset pricing literature (see Garleanu et al. 2012a, Garleanu et al. 2012b). Introducing an assumption in the spirit

of this literature naturally implies a norm-continuous transition as required for our existence result.
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holdings are lost and replaced by new holdings of (potentially) other agents. These new holdings

are modeled as endowments in the Lucas trees. Thus, compared to the above description of the

Lucas tree model, we now assume that the intertemporal storage technologies for the Lucas trees

are risky and that endowments in the Lucas trees are stochastic.

The general model description from Section 2.1 still applies, yet substantially simplifies. Denot-

ing endowments in the consumption good and the Lucas trees by ehpztq P R`` and fhpztq P RJ`,

respectively, dividends of the Lucas trees by dpzq P RJ`, holdings (i.e., storage choices) in the tree

by φhpztq P RJ`, and the fractions of Lucas trees that are displaced by Dpztq “
ř

hPH fhpztq, with

0 ă Djpztq ă 1 for all j P J, we can define a sequential competitive equilibrium as follows: given

initial conditions pφhpz´1qqhPH P
`

∆H´1
˘J a sequential competitive equilibrium is a process of

Ft-adapted prices and choices,
`

pt, pxh,t, φh,tqhPH
˘8

t“0
,

such that markets clear and agents optimize—that is, (A) and (B) hold.

(A) Market clearing:

ÿ

hPH

`

xhpz
tq ´ ehpz

tq
˘

´ dpztq ď 0,
ÿ

hPH

φhpz
tq “ 1, for all zt.

(B) Each agent h “ 1, . . . ,H maximizes utility:

pxh, φhq P arg max
px,φqě0

Uhpxq

s.t. p1pz
tq
`

xpztq ´ ehpztq ´ dpztqφpz
tq
˘

` p2pz
tq
`

φpztq ´ κhpz
tq
˘

ď 0, for all zt,

where we define the Lucas tree holdings at the beginning of the period by

κhpz
tq “ p1´Dpztqqφhpz

t´1q ` fhpztq.

Note that we have replaced the profit maximization condition from the general model with market

clearing conditions for the Lucas trees as intraperiod production is trivial—there is only one use for

each capital good. The endogenous part of the state is now the Lucas tree holdings of all agents at

the beginning of the period (after displacement), κ, that is

K “ tκ P RHJ :
ÿ

hPH

κhj “ 1, 0 ď κhj ď 1 for all j P J and all h P Hu “
`

∆H´1
˘J
. (10)

With this slightly different choice for the endogenous state space, K, and the according change of

the set of admissible portfolio holdings Ξ, the proof from above goes through with only little change.

Assumption 1 remains unchanged, while the analogue of Assumption 2 is now much more specific;

it reads as follows.

Assumption 6
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1. Dividends of the Lucas trees are bounded above and below: There is a ω P R`` such that

0 ă djpzq ă ω for all j P J, z P Z.

2. Displacement is equal to the endowments in the Lucas tree and strictly between zero and one:

0 ă Djpztq “
ř

hPH fh,jpztq ă 1 for all j P J, z P Z.

To state the analogues to Assumptions 4 and 5, we assume the same decomposition of the exogenous

shocks, Z “ Z0ˆZ1ˆZ2 with Borel σ-algebra Z “ Z0bZ1bZ2, such that we have for any B P Z

PpB|zq “
ż

Z1

ż

Z0

ż

Z2

1Epz
1qrz2pz

1
2|z, z

1
0, z

1
1qrz0pz

1
0|z, z

1
1qrz1pz

1
1|zqdµz2pz

1
2qdµz0pz

1
0qdµz1pz

1
1q.

We take Assumptions 4.1 and 4.2 from above and replace Assumption 4.3 and Assumption 5 by the

following assumption.

Assumption 7

1. For each agent h, and all pz1, z2q P Z1ˆZ2, pfhjp., z1, z2q{Djp., z1, z2qqhPH,jPJ is a C1-diffeomorphism

from Z0 to a subset of K with a non-empty interior. All fundamentals except fpzq and Dpzq are

independent of z0.

2. Conditionally on next period’s z11 the shock z12 is independent of both z10 and the current shock z.

Conditionally on z11 the measure µz2p.|z
1
1q is absolutely continuous with respect to some atomless

probability measure on Z2, so that we can write the density as rz2pz
1
2|z, z

1
0, z

1
1q “ rz2pz

1
2|z

1
1q.

Moreover, fpzq and Dpzq do not depend on z2.

Note that Assumption 7.1 does not rule out that Dpzq is independent of z0, as it is in Corollary 1

below. All in all, the following theorem follows directly from Proposition 2 and Theorem 1 above.

Proposition 3 Under Assumptions 1, 6, 4.1, 4.2, and 7 there exists a recursive equilibrium.

For illustration purposes we now provide a concrete specification for the stochastic structure of the

economic fundamentals that satisfies Assumptions 6, 4.1, 4.2, and 7.

Corollary 1 Suppose displacement is strictly between zero and one, 0 ă Dpztq ă 1, and endowments

in the Lucas tree are given by fhpztq “ Dpztq ¨ f̃hpztq, where f̃hpztq P p∆H´1qJ is i.i.d. and has a

continuous density. Suppose further that 0 ă djpzq ă ω for all j P J, z P Z and that aggregate output,
ř

jPJ djpztq`
ř

hPH ehpztq, can be written as the sum of an i.i.d. component that has continuous density

over a compact subset of R`` and of a Markovian component. Then assumptions 6, 4.1, 4.2, and 7 are

satisfied.

The corollary directly follows from Proposition 3 by constructing the dependence on the shock

components, z0, z1, z2, as follows: First, Dpzq depends on z1 only—that is, we can write Dpzq “

Dpz1q. Thus, the total amount of displacement is driven by the standard shock component. Second,

22



f̃hpzq depends on z0 only—that is, we can write f̃hpzq “ f̃hpz0q. Thus, the fractions of the new

Lucas tree that go to the different agents are driven by the purely transitory component of the shock.

Finally, we assume that
ř

jPJ djpztq`
ř

hPH ehpztq “ τ1pz1q`τ2pz2q, where τ1pz1q is a stochastic shock

to endowments and dividends that is persistent and τpz2q is a transitory component of aggregate

output.

4.2 A neoclassical growth model with heterogeneous agents

We consider a one-sector stochastic production economy with infinitely lived heterogeneous agents

and we prove the existence of a recursive equilibrium with beginning-of-period cash-at-hand across

agents as endogenous state.

The H infinitely lived agents have time-separable utility over consumption, supply labor inelas-

tically, and decide each period how much to consume and how much to save in risky capital. To

emphasize that there is only a single consumption good, we now denote each agent h’s consumption

at t by ch,t. We allow discount factors to differ across agents and to be stochastic. Agent h’s

expected utility function is thus given by

Uhppch,tq
8
t“0q “ E0

«

8
ÿ

t“0

˜

t
ź

k“0

δhpzkq

¸

uh pzt, ch,tq

ff

.

At each node zt agent h has a labor endowment lhpztq “ lhpztq, which he or she supplies inelastically

at the market wage wpztq. There is a storage technology that uses one unit of the consumption

good today to produce one unit of the capital good for the next period. We denote the investment

of household h in this technology by αhpztq ě 0 and the initial endowment in capital by αhpz´1q ě

0, where
ř

hPH αhpz
´1q ą 0. At time t the household sells the capital goods accumulated from

the previous period, αhpzt´1q, to the firm for a market price of 1 ` rpztq ą 0. The price of the

consumption good at each date event is normalized to one. The intertemporal budget constraint of

household h at node zt therefore reads

chpz
tq ` αhpz

tq “ lhpz
tqwpztq ` p1` rpztqqαhpz

t´1q, αhpz
tq ě 0.

For simplicity we assume that there are no financial markets. As in Section 3.4 the argument can

be extended to a model with financial assets and appropriate trading restrictions.

There is a single representative firm, which in each period t uses labor and capital to produce the

consumption good according to a constant-returns-to-scale production function F pzt,K, Lq. Since

the firm maximizes profits, the rate of return on capital, 1 ` rpztq, will always equal the marginal

product of capital, FKpzt,K, Lq, and the wage, wpztq, will equal the marginal product of labor,

FLpzt,K, Lq.

For given initial conditions,
`

z0, pαhpz
´1qqhPH

˘

, a competitive equilibrium is a collection of choices

for households, pchpztq, αhpztqqhPH, and for the representative producer, pKpztq, Lpztqq, and prices,
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prpztq, wpztqq, such that households and the firm maximize and markets clear—that is to say, for

all zt

Lpztq “
H
ÿ

h“1

lhpz
tq, Kpztq “

H
ÿ

h“1

αhpz
t´1q. (11)

In order to use our analysis above to show the existence of a recursive equilibrium, we need to

reformulate Assumptions 1, 2, and 4. In Assumption 1 it is assumed that the agent has strictly

positive endowments in the consumption good and for Assumption 4 it is crucial to assume that

agents have endowments in the capital good (in every period). Instead, we want to assume that

agents only have positive endowments in labor. In order to prove the existence of a recursive

equilibrium and formulate a version of Assumption 4, we therefore need to redefine the endogenous

state. Instead of beginning-of-period capital holdings we will take “cash-at-hand” (i.e., the sum of

wages and returns to capital) across agents to be the endogenous state variable. Formally, we define

the cash-at-hand of agent h at zt to be

κhpz
tq “ lhpz

tqwpztq ` p1` rpztqqαhpz
t´1q.

This choice of state variable allows us to make natural assumptions on fundamentals. The analogue

to Assumption 1 is as follows.

Assumption 8

1. Labor endowments are bounded above and below: there are l ą l ą 0 such that for all z P Z and

all h P H,

l ą lhpzq ą l.

2. For all h P H the instantaneous discount factor is measurable in z and for any z P Z it satisfies

δhpzq P p0, 1q.

3. The Bernoulli functions, uh : Z ˆ R`` Ñ R, h P H, are measurable in z and strictly increasing,

strictly concave, and continuously differentiable in c. For each z P Z they satisfy a strong Inada

condition: Along any sequence cn Ñ 0, supzPZ uhpz, c
nq Ñ ´8. Moreover, utility is bounded

above—that is, there exists a ū such that for all h P H, uhpz, cq ď ū for all z P Z, c P R``.

To simplify notation we define u1hpz, cq “
Buhpz,cq
Bc . Instead of the rather abstract Assumption 2 we

now have the following.

Assumption 9

1. The production function, F pz,K,Lq is measurable in z and continuously differentiable in pK,Lq.

2. For each z P Z, F pz, .q is concave and increasing in pK,Lq and it exhibits constant returns to

scale.
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3. For each z P Z and for each L ą 0 we have limKÑ0 FKpz,K,Lq “ `8 and F pz, 0, Lq “ 0; for

each K ą 0 we have limLÑ0 FLpz,K,Lq “ `8 and F pz,K, 0q “ 0.

4. There is some K̄ ă `8 such that F pz,K,
ř

hPH lhpzqq ă K for all K ą K̄, and all z P Z.

Assumption 9 readily implies that in equilibrium aggregate production is always bounded above by

some κ if the initial aggregate cash-at-hand is below κ. In applications researchers often assume

Cobb–Douglas production with a multiplicative TFP shock. This is consistent with our assumptions

as long as depreciation is positive at all shocks. Since aggregate labor used in production is a function

of the shock alone, we can write the production function and its derivatives as

fpz,Kq “ F pz,K,
H
ÿ

h“1

lhpzqq, fKpz,Kq “ FKpz,K,
H
ÿ

h“1

lhpzqq, fLpz,Kq “ FLpz,K,
H
ÿ

h“1

lhpzqq.

Since we assume that agents have no endowments in the capital good, we need to make an

additional assumption to ensure that in any equilibrium aggregate capital is always bounded away

from zero. We make the following assumption.

Assumption 10 There is a K ą 0 and an ε ą 0 such that for each agent h and all K ě K,

inf
zPZ

“

´u1h
`

z, lhpzqfLpz,Kq `
K
H fKpz,Kq ´K{H

˘

`

Ez rδhpz1qfKpz1,Kqu1h pz1, fKpz1,KqK{H ` lhpz1qfLpz1,Kqqss ą ε.

Although this appears to be a complicated joint assumption on utility and production, it can

be verified as holding in standard settings. This assumption guarantees that aggregate capital

will always be above K. Together with the assumption of strictly positive labor endowments this

assumption also implies a lower bound on each individual’s cash-at-hand, which we denote by κ ą 0.

We define the endogenous part of the state space to be

K “ tκ P RH` :
ÿ

hPH

κh ď 2κ̄, and κhl ě
1

2
κ for all h P Hu (12)

and assume, as above, that the shock space can be decomposed into three complete, separable metric

spaces, Z “ Z0 ˆ Z1 ˆ Z2, with Borel σ-algebra Z “ Z0 b Z1 b Z2. For each i “ 0, 1, 2 there is

a measure µzi on Zi and there are conditional densities rz0pz10|z, z11q, rz1pz11|zq, and rz2pz12|z, z10, z11q

such that for any B P Z we have

PpB|zq “
ż

Z1

ż

Z0

ż

Z2

1Bpz
1qrz2pz

1
2|z, z

1
0, z

1
1qrz0pz

1
0|z, z

1
1qrz1pz

1
1|zqdµz2pz

1
2qdµz0pz

1
0qdµz1pz

1
1q.

To ensure continuity of the state transition in Assumption 3.1 we assume that the shock z0 is

purely transitory, has a continuous density, and only affects agents’ endowments in labor. Moreover,

given z1 and z2, there is a C1-diffeomorphism from Z0 to a subset of possible labor endowments.

More precisely, we retain Assumptions 4.1 and 4.2 above and replace Assumption 4.3 and Assump-

tion 5 by the following assumption.
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Assumption 11

1. For each agent h, and all pz1, z2q P Z1ˆZ2, plhp., z1, z2qqhPH is a C1-diffeomorphism from Z0 to

a bounded subset of RH` with a non-empty interior. All other fundamentals are independent of z0.

2. Conditionally on next period’s z11, the shock z12 is independent of both z10 and the current shock z.

Conditionally on z11, the measure µz2p.|z
1
1q is absolutely continuous with respect to some atomless

probability measure on Z2 so that we can write the density as rz2pz
1
2|z, z

1
0, z

1
1q “ rz2pz

1
2|z

1
1q.

Moreover, fpz,Kq does not depend on z2 and, for each agent h, lhpzq does not depend on z2.

We thus assume that δhpztq and uhpzt, .q can possibly depend on z2. Moreover, the probabilities

over future realizations of z1 can clearly depend on z2. In this case, z2 can be interpreted as a “news

shock”.

As above, we can now take the state-space to consist of shocks 1 and 2 as well as the endogenous

state. That is to say, we take

S “ Z1 ˆ Z2 ˆK

with Borel σ-algebra S. We have the following theorem.

Proposition 4 Under Assumptions 8, 9, 10, 4.1, 4.2, and 11 there exists a recursive equilibrium.

The proof of this proposition is along the lines of the proofs of Proposition 2 and Theorem 1.

However, since we define the endogenous state differently, some key parts are different. A complete

proof can be found in the appendix.

As for the case of the Lucas tree model, it is useful to give one concrete specification of shocks

that satisfies our assumptions.

Corollary 2 Suppose each agent’s labor endowments can be written as the sum of an i.i.d. component

that has a continuous density over a compact subset of R``, and of a component that depends on some

shock z1 that follows a Markov process. Also suppose that production functions and utility functions

depend on this shock z1. If there exists a shock z2 that is independent of the past realization of pz1, z2q

but might depend on the current z1, and if this shock does not affect any fundamentals except possibly

discount factors, utility, and transition probabilities then the Assumptions 4.1, 4.2, and 11 are satisfied.

5 Conclusion

We prove the existence of recursive equilibria in general stochastic production economies with in-

finitely lived agents and incomplete markets. In order to do so, we have to make some nonstandard

assumptions on the stochastic process of economic fundamentals.

Most importantly, we need to assume that there are atomless shocks to fundamentals. In

contrast, in many applications exogenous shocks follow a Markov chain with finite support. However,
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such a discrete-shock process is often just an approximation to a true data-generating process with

atomless innovations (e.g., following Tauchen and Hussey (1991)). In this case, one should be more

concerned with the existence of an epsilon-equilibrium of the discrete-shock model and its relation

to an exact equilibrium for the continuous-shock model. This question can only be posed if the

existence of an exact recursive equilibrium can be guaranteed.

In addition, we need to guarantee, by Assumption 4, that agents’ current choices lead to a non-

degenerate distribution over the endogenous state next period. This is in contrast to many standard

models in which current choices pin down next period’s endogenous state deterministically. In

stochastic games, however, it is well known that a so-called deterministic transition creates problems

for the existence of Markov equilibria (see, e.g., Levy (2013)).

Moreover, Levy and McLennan (2015) provide an example of a stochastic game that illustrates

that continuity assumptions along the line of our Assumption 4 are not sufficient to guarantee the

existence of a Markov equilibrium and that a version of Assumption 5 is needed as well. Our

stylized example of nonexistence in Section 2.3 violates Assumptions 4 and 5 above.10 To see that

Assumption 5 does not suffice to ensure existence, note that a special case of the assumption is

to assume that one component of the shock does not affect fundamentals (a sunspot) and is i.i.d.

with atomless distribution. Equilibrium prices may then depend on the realization of this shock,

but irrespective of what one assumes about the distribution of prices, the same argument as in

Section 2.3 implies that there can never be an equilibrium with positive storage. Zero storage,

however, entails that—independently of the realization of the sunspot—the price in shock 3 is

uniquely determined by the shock in the previous period, implying the nonexistence of a recursive

equilibrium. In contrast to Assumption 5, one can easily verify that Assumption 4 restores existence

in the example.11 As long as there is a non-atomic shock to the endowments of the capital good a

recursive equilibrium exists in our example. If one considers a sequence of economies along which

the variance of the shock converges to zero one can obtain the existence of a competitive equilibrium

in the limit, but this equilibrium is not recursive.

While we have to make some strong assumptions, our paper provides the only result in the liter-

ature that ensures the existence of a recursive equilibrium in any variation of the model. Therefore,

even if the assumptions do not hold for a specific tractable formulation used in an application, it

is useful to understand under which additional assumptions existence can be obtained. It is the

subject of further research to examine whether the general existence of a recursive equilibrium can
10It also violates Assumption 1, yet it is easy to see that Assumption 1 alone cannot restore existence in the

example; the specific endowments and preferences were simply chosen to make the examples as simple as possible.
11Unfortunately, there are many other perturbations to fundamentals that also restore existence. As Citanna and

Siconolfi (2008) point out (for OLG economies, but the argument also applies to examples of nonexistence in economies

with infinitely lived agents), all examples for which the economy decomposes into several two-period economies suffer

from the shortcoming that they are not robust—perturbations in endowments restore the existence of a recursive

equilibrium.
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be established without some version of Assumptions 4 and 5.

Appendix: Proofs

Proof of Proposition 1.

Note that if the conditions in the lemma are satisfied then there exist ppx̄h,t, ᾱh,tqhPH, p̄tq8t“0 such

that markets clear, budget equations hold, and there exist multipliers νhpztq and ξhpztq such that

the following first order conditions hold for each agent h P H and all zt.

Dxuhpzt, x̄hpz
tqq ´ νhpz

tqp̄pztq ` ξhpz
tq “ 0 (13)

x̄hpz
tq K ξhpz

tq ě 0 (14)

ᾱhpz
tq K

`

´νhpz
tqp̄pztqA0

hpztq ` δEzt
“

νhpz
t`1qp̄pzt`1qA1

hpzt`1q
‰˘

ě 0. (15)

It suffices to show that these conditions are sufficient for px̄h,t, ᾱh,tq to be a solution to the agents’

infinite horizon problem. Following Duffie et al. (1994), assume that for any agent h, given prices,

a budget feasible policy px̄h,t, ᾱh,tq satisfies (13)–(15). Suppose there is another budget feasible

policy pxh,t, αh,tq. Since the value of consumption in 0 only differs by the value of production plans,

concavity of uhpz, .q together with the gradient inequality implies that

uhpz0, x̄hpz
0qq ě uhpz0, xhpz

0qq `Dxuhpzu, x̄hpz
0qqpx̄hpz

0q ´ xhpz
0qq (16)

ě uhpz0, xhpz
0qq ` νhpz

0qp̄pz0qpx̄hpz
0q ´ xhpz

0qq

“ uhpz0, xhpz
0qq ` νhpz

0qp̄pz0qA0
hpz0qpαhpz

0q ´ ᾱhpz
0qq.

We show by induction, that for any T it holds that

E0

«

8
ÿ

t“0

δtuhpzt, x̄hpz
tqq

ff

ě E0

”

řT
t“0 δ

tuhpzt, xhpz
tqq

ı

` E0

“
ř8
t“T`1 δ

tuhpzt, x̄hpz
tqq

‰

` (17)

δTE0

“

νhpz
T qppzT qA0

hpzT qpαhpz
T q ´ ᾱhpz

T qq
‰

.

By (16), this inequality holds for T “ 0. To obtain the induction step when ᾱj ą 0, we use the first

order conditions to substitute δEzt´1

”

νhpz
tqp̄pztqa1

hjpztqpαhjpz
t´1q ´ ᾱhjpz

t´1qq

ı

for

νhpz
t´1qp̄pzt´1qa0

hjpzt´1qpαhjpz
t´1q ´ ᾱhjpz

t´1qq,

and then apply the budget constraint and the law of iterated expectations. When ᾱj “ 0, it is clear

that αj ě ᾱj and since

δEzt´1

“

νhpz
tqp̄pztqa1

hjpztq
‰

ě νhpzt´1qp̄pzt´1qa0
hjpzt´1q,

the induction step follows.

The second term on the right hand side of (17) will converge to zero as T Ñ 8 since uh is

bounded above by Assumption 1 and below for the following reason: Mh1psq “
Buhpz,xhq
Bx1

is bounded
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above, thus by the strong Inada condition x1 is bounded below by some x1, and therefore utility is

bounded below by uhpx1, 0, . . . , 0q. The third term will converge to zero because the M -functions

are assumed to be bounded above and production is bounded by Assumption 2. l

Proof of Lemma 1.

The proof is analogous to the proof of Lemma 1 in Duggan (2012). l

Proof of Lemma 2.

For any M̄ P Mb and s “ pz, κq P S, we define the following compact sets:

rYpsq “ ty P Ypzq : y `
ÿ

hPH

pehpzq ` κhq ě 0u,

rCpsq “ txh P C :
1

2
xh ´

ÿ

hPH

pehpzq ` κhq P Ypzq, xh1 ě cM̄u,

A “ tαh P RJ` : fhlpz
1q `

ÿ

jPJ

a1
hljpz

1qαhj ď 2κ̄ for all h P H, l P L, z1 P Zu.

The lower bound on consumption in good 1, cM̄ , in the definition of rCpsq will generally be different

from c as defined in Section 3.1, but for any given M̄ its existence is guaranteed by Assumption 1.

To ensure compactness of A it is without loss of generality to assume that for each agent h and

each storage technology j there is a commodity l and a shock z1 such that a1
h,l,jpz

1q ą 0. If this is

not the case, it is always optimal for all h to set αh,j “ 0.

For a given η ą 0 we define the truncated price set ∆L´1
η “ tp P RL` :

řL
l“1 pl “ 1, p1 ě ηu and

for each agent h “ 1, . . . ,H the choice correspondence

Φh
η : ∆L´1

η ˆΞ Ñ rCpsq ˆA.

by

Φh
ηpp, α

˚q “ arg max
xhPC̃psq,αhPA

EM̄h ps, xh, αh, α
˚q s.t.

´p ¨ pxh ´ ehpzq ´ κh `A
0
hpzqαhq ě 0

By a standard argument, the correspondence Φ is convex-valued, non-empty valued, and upper-

hemicontinuous. Define the producer’s best response ΦH`1
η : ∆L´1

η Ñ rYpsq by

ΦH`1
η ppq “ arg max

yP rYpsq
p ¨ y

and define a price player’s best response,

Φ0
η : pC̃psq ˆAqH ˆ Ỹpsq Ñ ∆L´1

η
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by

Φ0
ηppxh, αhqhPH, yq “ arg max

pP∆L´1
η

p ¨

˜

ÿ

hPH

pxh ´ ehpzq ´ κh `A
0
hpzqαhq ´ y

¸

.

It is easy to see that this correspondence is also upper-hemicontinuous, non-empty, and convex

valued. Finally, define

ΦH`2 : AH Ñ Ξ

by

ΦH`2pαq “ arg min
α˚PΞ

}α´ α˚}2.

By Kakutani’s fixed-point theorem, the correspondence
ˆ

H`1
Ś

h“0

Φh
η

˙

ˆΦH`2 has a fixed point, which

we denote by px̄, ᾱ, ȳ, ᾱ˚, p̄q.

Since by budget feasibility we must have

p̄ ¨

˜

ÿ

hPH

px̄h ´ ehpzq ´ κh `A
0
hpzqᾱhq ´ ȳ

¸

ď 0,

optimality of the price player implies that for sufficiently small η ą 0 the upper bound imposed by

requiring x P C̃psq and the upper bound on production will both never bind. Consumption solves

the agent’s problem for all x P C and production maximizes profits among all y P Ypzq. In addition,

Assumption 2 implies that the upper bound on each αh cannot be binding and that in fact ᾱ “ ᾱ˚.

Finally, there must be some ε ą 0 such that for all η ă ε the fixed point must satisfy that p̄1 ě ε.

This is true because all commodities must either be consumed, used as an input for intra-period

production, or stored. If p̄1 ă ε there must be some other commodity l ‰ 1 with p̄l
p̄1
ą 1´ε
pL´1qε . But for

sufficiently small ε ą 0 the (relative) price of this commodity is so high that it is not consumed—

because marginal utility of good 1 is bounded away from zero in rCpsq and marginal utility of

commodity l is finite (as utility is assumed to be continuously differentiable on C “ R``ˆRL´1
` ).

Furthermore, good l can neither be used for (constant-returns-to-scale) intratemporal production,

nor for (linear) storage—the agent who stores it could eventually increase his utility by selling a

small fraction of this commodity and increasing his consumption of commodity 1. Therefore there

is some ε ą 0 such that for η ă ε the price player chooses a price with p̄1 ě ε and a standard

argument gives that
ÿ

hPH

px̄h ´ ehpzq ´ κh `A
0
hpzqᾱhq “ ȳ.

This proves the lemma. l

Proof of Lemma 3.

For given s P S the set of allocations x P RHL` , α P Ξ, y P Ypzq, and prices p P ∆L´1 satisfying (6),

(7), and (8) can be described as solutions to a system of equations and inequalities, compare the

proof of Proposition 1. Moreover, the correspondence s Ñ NM̄ psq is (non-empty) compact-valued.
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Applying results from Chapter 18 in Aliprantis and Border (2006) and Himmelberg (1975), it is

easy to show that the correspondence s Ñ PM̄ psq is weakly measurable.

By the selection theorem of Kuratowski and Ryll-Nardzewski, PM̄ has a measurable selector (see

Theorem 18.13 in Aliprantis and Border(2006)). Consequently, the mapM Ñ RcopMq is non-empty

valued, and obviously it is also convex-valued. Take Mn ÑM as nÑ8, Mn,M P M and vn Ñ v

such that vn P RcopMnq for each n. We assume that both sequences converge in the weak* topology

σpLm8, L
m
1 q. We need to show v P RpMq. Since for a given s each EMh ps, .q is jointly continuous

in px, α, α˚q and M and since the equilibrium conditions can be expressed as weak inequalities

the correspondence M Ñ PM psq has a closed graph. Theorem 17.35 (2) in Aliprantis and Border

(2006) implies that the correspondence M Ñ Pco
M psq has a closed graph as well. Moreover, since

S is a finite measure space Mazur’s lemma implies that there exists a sequence v̂n of finite convex

combinations of tvp : p “ 1, 2, ...u such that some subsequence v̂n converges to v almost surely, i.e.,

v̂npsq Ñ vpsq for every s P SzS1 where the set S1 is of measure zero. Given the closed graph of

M Ñ Pco
M psq we must have that for any ε ą 0, for sufficiently large n the set Pco

Mnpsq is a subset of

an ε-neighborhood of Pco
M psq. Therefore for any ε ą 0 there is a k0 such that for all k ą k0, v̂kpsq

is within an ε-neighborhood of Pco
M psq. Therefore vpsq is in an ε-neighborhood of Pco

M psq but since

ε is arbitrary we must have vpsq P Pco
M psq for any s P SzS1. This proves that Rco : M Ñ L`8 has a

closed graph. Similarly it can be shown that M Ñ RcopMq is weak* closed-valued. l

Proof of Lemma 4.

Assumption 3 states that there is a sub-σ-algebra G of S such that S has no G-atom. Defining

IS,GF “ tE rf |Gs : f is an S-measurable selection of F u,

it follows from Theorem 5 in Dynkin and Evstigenev (1976) that since S has no G-atom, it must

hold that IS,GF “ IS,GcopF q. Therefore, for each measurable selection of Fco, M , there is a measurable

selection, M̂ , of F such that E rM |Gs “ E
”

M̂ |G
ı

. Therefore we must have for each h and all ps, αq

that
ż

S
Mhps

1qA1
hpz

1qdQps1|s, αq “

ż

S
Mhps

1qA1
hpz

1qqps1|s, αqdλps1q “

ż

S
E
“

MhA
1
hqs,α|G

‰

dλps1q

“

ż

S
E rMh|GsA1

hpz
1qqps1|s, αqdλps1q “

ż

S
E
”

M̂h|G
ı

A1
hpz

1qqps1|s, αqdλps1q

“

ż

S
M̂hps

1qA1
hpz

1qdQps1|s, αq.

This proves the result. l

Proof of Lemma 5.

The proof of Lemma 2 implies that there exists some c such that whenever ppxhqhPH, pq P NM̄ psq

for some M̄ P L`8 and some s P S then xhl ď c for all h, l. This, together with Assumption 1
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implies that there is an ε ą 0 such that if pxpztqq is the consumption choice of some agent in any

competitive equilibrium then

uhpzt, x̃q ` Ezt

«

8
ÿ

i“1

δiuhpzt`i, p1´ εqxpz
t`iqq

ff

ą Ezt

«

8
ÿ

i“0

δiuhpzt`i, xpz
t`iqq

ff

,

where x̃ “ px1pz
tq ` 1, p1 ´ εqx2pz

tq, . . . , p1 ´ εqxLpz
tqq. An upper bound on relative equilibrium

prices of goods that are not used as inputs to intra-temporal production is then given by 2
ωε ; if

the price of any commodity relative to good 1 is above this threshold, then some agent can sell

a fraction ε of this commodity, consume one unit more of commodity 1 and increase his lifetime

utility. Assumption 2 implies that the relative price of any input to production is bounded above

by the zero profit condition. Taken together this implies that there is some pu such that in any

competitive equilibrium it must be that pl
p1
ă 1

2p
u.

Define a weak* compact and convex set

M0 “ tM P L`8 : Mh1 ď m̄,Mhl ď pum̄, l “ 2, . . . , L a.s. for all h P Hu,

where m̄ is defined in (1). For any set M Ă L`8 define a correspondence s Ñ Pco
Mpsq by

Pco
Mpsq “ conv

˜

ď

MPM

PM psq

¸

for all s P S,

and denote by RcopMq the set of measurable selections of Pco
M. We construct the set M˚ inductively

by defining, for each i “ 0, 1, 2 . . ., Mi`1 “ RcopMiq XM0.

Note that by the construction of Mi and by Lemma 4 any element of Mi, if it exists, consists of

equilibrium marginal utilities for an artificial pi`1q-period economy where in the last period agents

have some continuation utility M0 P M0.

Defining M0 “ 0, it is clear from the above construction of M0 that whenever M1 P RcopM0q

we must have M1 P M0. From the above argument it follows that whenever M2 P RcopM1q we

must have M2 P M0, and in fact that each M i defined recursively in this manner will lie in M0.

Therefore each Mi is non-empty. Obviously each Mi is also convex. By the same argument as in

the proof of Lemma 3 each Mi is weak* closed and hence as a subset of M0 it is weak* compact.

Obviously we have M1 Ă M0 and if Mi Ă Mi´1 it must follow that Mi`1 Ă Mi. Therefore we

must have for any i “ 0, 1, . . . that for all M P Mi

RcopMq XM0 Ă Mi.

Assumption 1, together with discounting and the construction of the upper bound pu guarantee

that for T sufficiently large, if M̄ P MT there can be no solution to (6), (7), and (8) with x1 ď
1
2c, or

with pl
p1
ą pu for some l “ 2, . . . , L. Therefore we have RcopM̄q Ă M0 and we can take M˚ “ MT .

l
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Proof of Lemma 6.

We first show that under Assumptions 4 and 5 , Qp.|s, αq satisfies Assumption 3.1. By Assumption

5, it suffices to show norm-continuity for the marginal transition function on S, i.e., that for any

sequence αn P Ξ with αn Ñ α0 P Ξ

sup
BPS

|QspB|s, α
nq ´QspB|s, α

0q| Ñ 0

for all s P S. To show this, we first define for given pz, z11q P ZˆZ1 and α P Ξ a C1-diffeomorphism

gpz,z11,αq that maps Z0 into its range K̄pz,z11,αq
“ gpz,z11,αqpZ0q Ď K with gpz,z11,αqpz

1
0q “ pfhpz

1
0, z

1
1q `

A1
hpz

1
1qαhqhPH and a density

rκpκ
1|z, z11, αq :“

$

’

&

’

%

rz0pg
´1
pz,z11,αq

pκ1q|z, z11q ¨
ˇ

ˇ

ˇ
Jpg´1

pz,z11,αq
pκ1qq

ˇ

ˇ

ˇ
if D z0 : gpz,z11,αqpz0q “ κ1

0 otherwise,

where |Jp¨q| denotes the determinant of the Jacobian.

Denoting by µκ the Lebesgue measure defined on the σ-algebra of Borel subsets of K, for B P S

and αn P Ξ with αn Ñ α0 P Ξ, we have

QspB|s, α
nq “

ż

Z1

ż

Z0

1B

“

z11, pfhpz
1q `A1

hpz
1qαnhqhPH

‰

rz0pz
1
0|z, z

1
1qrz1pz

1
1|zqdµz0pz

1
0qdµz1pz

1
1q

“

ż

Z1

ż

Z0

1B

”

z11, gpz,z11,αnqpz
1
0q

ı

rz0pz
1
0|z, z

1
1qrz1pz

1
1|zqdµz0pz

1
0qdµz1pz

1
1q

“

ż

Z1

ż

K̄
pz,z11,α

nq

1B

“

z11, κ
1
‰

rκpκ
1|z, z11, α

nqrz1pz
1
1|zqdµκpκ

1qdµz1pz
1
1q

“

ż

Z1

ż

K
1B

“

z11, κ
1,
‰

rκpκ
1|z, z11, α

nqrz1pz
1
1|zqdµκpκ

1qdµz1pz
1
1q

“

ż

B
rκpκ

1|z, z11, α
nqrz1pz

1
1|zqdµκpκ

1qdµz1pz
1
1q,

where we used Fubini’s theorem for the first equality and the change of variables theorem for the

third equality. Since pfhp., z11qqqhPH is a C1-diffeomorphism, the set pfhpBZ0, z
1
1qqhPH is of measure

zero and it follows that rκpκ1|z, z11, αnq Ñ rκpκ
1|z, z11, α

0q for almost all κ1. By Scheffe’s lemma we

then obtain norm-continuity.

For all ps, αq the marginal distribution of Qp.|s, αq on S is absolutely continuous with respect

to the product measure η “ µκ ˆ µz1 and has a Radon–Nikodym derivative qspz
1
1, κ

1|s, αq “

rκpκ
1|z, z11, αqrz1pz

1
1|zq. Defining the measure λp.q by

λpBq “

ż

S

ż

Z2

1Brs, z2srz2pz2|z1qdµz2pz2qdηpsq

and taking G “ S btH,Z2u, Assumption 5 together with Proposition 2 in He and Sun (2017) then

implies that Qp.|s, αq satisfies Assumptions 3.2 and 3.3. l
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Proof of Proposition 4.

Define

Ξ “ tα P RH` :

˜

αhfKpz
1,
ÿ

i

αiq ` lhpz
1qfLpz

1,
ÿ

i

αiq

¸

hPH

P K for all z1 P Zu.

Our definition of K implies that for any sequence of κpztq P K each individual’s budget-feasible

consumption must be bounded above and hence there is a lower bound m ą 0 on each individual’s

marginal utility. Moreover, for any such a sequence an individual will have income bounded away

from zero and by the same argument as in Section 3 there is an upper bound on marginal utility,

which we denote by m̄. As in Proposition 1 we can characterize competitive equilibrium by marginal

utilities.12 For this, let ĂM be the set of functions in Lm8 that are essentially bounded below by m.

Given any M̄ “ pM̄1, . . . , M̄Hq P ĂM we define

EM̄h ps, ch, αh, α
˚q “ uhpz, chq ` δEs

«

M̄hps1qfKpz
1,
ÿ

iPH

α˚i qαh

ff

(18)

with

s1 “

˜

z1,

˜

α˚hfKpz
1,
ÿ

i

α˚i q ` lhpz
1qfLpz

1,
ÿ

i

α˚i q

¸

hPH

¸

.

Proposition 1 then implies that a recursive equilibrium exists if there are functions M̄ : S Ñ RH` ,

M̄ P ĂM, such that for each s “ pz, κq P S there are choices pc̄h, ᾱhq for each agent h P H with ᾱ P Ξ,

M̄hpsq “ u1hpz, c̄hq and

pc̄h, ᾱhq P arg max
chPR``,αhPR`

EM̄h ps, ch, αh, ᾱq s.t. (19)

c´ κh ` αh ď 0.

As above the exogenous transition probability P implies a transition probability Qp.|s, αq on S.

Under Assumption 4.1, 4.2 and Assumption 11, Lemma 1 holds as in Section 3. We define

PM̄ psq “
 `

u1hpz, c̄hq
˘

hPH
: Dᾱ P Ξ such that pc̄h, ᾱhq solves p19q for each h

(

.

While this correspondence is not guaranteed to be non-empty valued, we can define Pco
M̄

by requiring

Pco
M̄
psq “ conv pPM̄ psqq for all s P S. Let RpM̄q be the set of (equivalence classes of) measurable

selections of PM̄ , and RcopM̄q the set of measurable selections of Pco
M̄
. Note that for any M Ă ĂM

this defines a (possibly empty-valued) correspondence Rco : M Ñ Lm8. As in Lemma 3 for each

M̄ P ĂM, the correspondence PM̄ psq is measurable.
12In this setting, we could equivalently use agents’ investment policies instead of marginal utilities as the unknown

functions. However, in the general setting above, with several goods and several types of capital this is no longer an

option.
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To show that there exists a (non-empty) convex and weak* compact set M˚ Ă ĂM such that

RcopM̄q is non-empty and RcopM̄q Ă M˚ for all M̄ P M˚, define a weak* compact and convex set

M0 “ tM P Lm8 :
1

2
m ďMh ď 2m̄ a.s. for all h P Hu.

For any set M Ă ĂM define a correspondence s Ñ Pco
Mpsq by

Pco
Mpsq “ conv

˜

ď

MPM

PM psq

¸

,

and denote by RcopMq the set of measurable selections of Pco
M. We construct the set M˚ inductively

by defining for i “ 0, 1, 2 . . ., Mi`1 “ RcopMiq XM0. Note that by the construction of Mi and by

Lemma 4 any element of Mi consists of equilibrium marginal utilities for an artificial pi` 1q-period

economy where in the last period agents have some bounded continuation utilityM0 P M0. Defining

for each h “ 1, . . . ,H, M0
h “ u1hpz, κhq, it follows from Assumption 10 that PM0psq is non-empty for

every s and therefore, using Lemma 4, it follows that RcopM0q is non-empty. Moreover, it is clear

from the construction of M0 that whenever M1 P RcopM0q we must have M1 P M0. Therefore M1

is non-empty. From the same argument it follows that there is some M2 P RcopM1q with M2 P M0

and recursively that for each i there is M i P RcopM i´1q with M i P M0. Therefore each Mi is

non-empty. Obviously each Mi is also convex. By the same argument as in the proof of Lemma 3

each Mi is weak* compact. Obviously we have M1 Ă M0 and if Mi Ă Mi´1 it must follow that

Mi`1 Ă Mi. Therefore we must have for any i “ 0, 1, . . . that for all M P Mi

RcopMq XM0 Ă Mi.

Assumptions 8–10, together with discounting guarantee that for T sufficiently large, RcopMq

must be non-empty for all M P MT and if M̄ P RcopMq then M̄ P M0. Therefore we can take

M˚ “ MT . Having constructed a set M˚ on which PM psq is non-empty valued for all s the rest of

the proof is identical to the proof of Proposition 2. l
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