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Abstract

In this paper we develop a Negishi approach to characterizing recursive equilibria in stochas-

tic models with overlapping generations. When competitive equilibria are Pareto-optimal, using

recursive Negishi weights as a state variable has several major computational advantages over

the standard approach of using financial wealth or portfolios. We show that the Negishi ap-

proach extends naturally to models with borrowing constraints where the welfare theorems fail.

Moreover, we derive two sets of sufficient conditions for the existence of recursive equilibria. The

first involves a strong gross-substitutes assumption on preferences, yet only weak assumptions

on the Markov process that governs fundamentals. The second includes only weak assumptions

on preferences, but requires that the exogenous shock contains two components with atomless

distributions, a purely transitory shock to discounting as well as a shock to endowments and/or

dividends which does not depend on last period’s shocks directly.
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1 Introduction

In infinite horizon exchange economies with overlapping generations, complete financial markets, and

a Lucas tree, the welfare theorems hold and Negishi’s (1960) approach to characterizing equilibrium

allocations as the solution to a social planner’s problem can be employed (see Kehoe et al. (1992)).

In this paper we show how to formulate the equilibrium of a stationary stochastic overlapping

generations (OLG) economy recursively using recursive Negishi weights as an endogenous state

variable. Negishi’s approach is typically considered useful only when the number of commodities

is larger than the number of agents, and in the OLG model both are infinite. However, we show

that using recursive Negishi weights to compute equilibria in OLG models can nevertheless result

in large efficiency gains compared to conventional methods that approximate recursive equilibria

on a natural state space such as agents’ beginning-of-period portfolios or financial wealth. We also

show how our recursive method can still be applied in the presence of borrowing constraints when

the welfare theorems do not hold.

We analyze an OLG exchange economy with L perishable commodities and Markovian funda-

mentals. Each period H agents enter the economy, they live for A periods and maximize time-

separable, expected utility. We first consider a model with complete financial markets where equi-

librium allocations are Pareto-efficient and can be obtained as a solution to a planner’s problem

that maximizes the sum of all agents’ utilities weighted by Pareto weights which ensure that the

budgets of all agents are balanced. At each node of the event tree we define instantaneous Negishi

weights as the Pareto weights of the agents currently alive, discounted by their respective discount

rates since birth. Since utility is time- and state-separable, individuals’ consumption at each node

is a simple function of these weights. While the weights for the non-newborn agents are directly ob-

tained by discounting their previous-period weights, determining the weights of the newborn agents

is non-trivial. By writing the budget equations recursively we obtain a functional equation that

determines these weights as a function of the exogenous shock and the weights of the non-newborn

agents. As a second step we show how our approach extends naturally to debt-constrained models

in which the welfare theorems fail. In this case, whenever borrowing constraints bind, instanta-

neous Negishi weights are no longer simply obtained by discounting the previous-period weights.

It is natural to define the endogenous state variable to consist of the discounted previous-period

instantaneous Negishi weights of the currently alive, which we call recursive weights. Without bor-

rowing constraints, these recursive weights are of course equal to the current instantaneous Negishi

weights of the non-newborn agents. In contrast, in the presence of debt constraints, instantaneous

Negishi weights differ from the recursive weights whenever borrowing constraints bind. We argue

that, despite this complication, it is still advantageous to use recursive weights as the endogenous

state. Obviously, they can no longer be interpreted as discounted Pareto weights for a social plan-

ner’s problem, yet together with the exogenous shock they are still a sufficient statistic for the
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current state of the economy. Using these recursive weights as the endogenous state we prove the

existence of recursive equilibria under two sets of sufficient conditions. The first includes a strong

gross-substitutes assumption on preferences, yet only weak assumptions on the Markov process that

governs fundamentals. The second includes only weak assumptions on preferences, but stronger

assumptions on the exogenous shocks and it also requires that households cannot borrow against

future labor endowments.

Models with overlapping generations have widespread applications in public finance, macroeco-

nomics, and finance (see e.g., Kotlikoff and Auerbach (1983) or Storesletten et al. (2007)). However,

in the presence of aggregate risk the computation of equilibria in these models becomes very diffi-

cult even when financial markets are complete (see e.g. Rios-Rull (1996)). It turns out that many

of these difficulties can be mitigated if recursive Negishi weights are used as an endogenous state

variable. For models with infinitely lived agents, there are already various papers that use indi-

viduals’ consumption or recursive Negishi weights as the endogenous state variable to facilitate the

computation of equilibria. When markets are complete and equilibria Pareto-efficient, using recur-

sive weights as the endogenous state has been shown to be useful when agents have heterogeneous

beliefs and/or non-separable utility (see e.g., Beker and Espino (2011) or Borovička (2013)). In

such models the welfare theorems hold and agents’ consumption is characterized by fixed Negishi

weights. Non-separable utility or differences in beliefs imply that recursive weights change with

discounting and belief differences, but existence of recursive equilibrium is typically not a major

problem. Following Marcet and Marimon (1999) many studies have examined models in which allo-

cations are constrained-efficient and can be characterized as the solution to a programming problem

with forward looking constraints (see e.g. Ljungqvist and Sargent (2004) for an overview). Messner

et al. (2013) provide general conditions for existence of recursive equilibria in this framework. Sev-

eral authors apply the method to models with infinitely lived agents, incomplete markets, and/or

borrowing constraints (e.g., Cuoco and He (1994), Chien and Lustig (2010), Chien et al. (2011),

Dumas and Lyasoff (2012), and Gottardi and Kubler (2013)). In these models allocations are not

constrained-efficient and, with the exception of Gottardi and Kubler (2013), there are no results

on the existence of recursive equilibria. Garleanu and Panageas (2014) consider a continuous-time,

perpetual-youth model and by using recursive Negishi weights as the endogenous state variable they

reduce the model dynamics to a simple system of differential equations. We show, for stochastic

models with overlapping generations and borrowing constraints, that using recursive Negishi weights

has computational and theoretical advantages over using the natural state.

The computational advantages of recursive Negishi weights are as follows: First, one needs to

approximate much fewer functions to characterize the equilibrium dynamics of the economy. For

the case of complete markets and no borrowing constraints, one needs only the map from the

current state to instantaneous weights of the newborn agents. These are ZH functions, where Z
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is the number of exogenous shocks and H is the number of agents per generation. In contrast,

H(A − 1)Z2 functions are necessary to approximate the map from current financial wealth across

agents to their financial wealth next period for each combination of shocks in the current and

the subsequent period. Thus, the Negishi approach reduces the number of functions needed to

capture equilibrium dynamics (A − 1)Z times. Importantly, the size of the systems of non-linear

equations that have to be solved also decreases by the same factor. This reduces computation time

substantially, if A or Z is large. Also, by using Negishi’s method the computational burden barely

increases with the number of physical commodities, while it increases substantially if the natural

state space is used. Second, the use of recursive Negishi weights as states allows for a straightforward

error analysis. Approximation errors can be interpreted as transfers that are necessary to obtain the

computed allocation as an equilibrium allocation. Third, if one uses global methods to approximate

a recursive equilibrium (such as projection methods, see Judd et al. (2003) for an overview), it is

important to find simple bounds on the endogenous state space. These bounds are endogenous if

one uses financial wealth as the endogenous state. In contrast, for the case of recursive weights,

as policies are homogeneous of degree zero in recursive weights, we can take a unit simplex as the

endogenous state space. Finally, if one uses local methods, then portfolio choices at the deterministic

steady state are not determined; using recursive weights as a state circumvents this problem since

a deterministic steady state in weights is well defined and standard perturbation methods can be

used to find local approximations to the recursive equilibrium.

When it comes to theory, it is well known that recursive equilibrium might not exist in stochastic

models with overlapping generations if one uses beginning-of-period asset holdings as the endogenous

state variable (see Kubler and Polemarchakis (2004)). Sufficient conditions for (generic) existence

have been developed for the case without borrowing constraints by Citanna and Siconolfi (2010) but

they are often not applicable to models used in applications. We examine the existence of equilibria

that are Markovian in the (recursive) Negishi weights. While we do not know of counterexamples

to existence in our framework, it seems likely that they can be constructed. However, it is known

that in our unconstrained model with complete markets, equilibrium is unique if all agents’ utility

functions satisfy the gross substitute property (see Kehoe et al. (1991)). We show that this property

also guarantees the uniqueness of continuation equilibrium and hence the existence of a recursive

equilibrium. This is still the case if agents are borrowing constrained (Gottardi and Kubler (2013)

consider a related case with infinitely lived agents).

We also consider a version of the model with an atomless and purely transitory shock to agents’

discounting and an atomless shock to endowments and/or dividends which does not depend directly

on last period’s shocks. Following recent advances in stochastic games by Duggan (2012), we give

general conditions for the existence of recursive equilibrium in this version of our model. Nowak

and Raghavan (1992) prove the existence of correlated Markov equilibria in a class of stochastic
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games with continuous states. Their method makes two key assumptions. First, they assume that

the probability distribution of next period’s state varies continuously with current actions; following

the literature, we refer to this property as ‘norm-continuous transition’. In our setup, this prop-

erty cannot simply be assumed, yet needs to be derived from economic fundamentals, in particular

from the presence of shock to agents’ discounting. Second, they introduce a public randomization

device (sunspots). Duggan (2012) shows that one can dispense with sunspots if some component

of the exogenous state is subject to a shock that is atomlessly distributed and does not depend on

the previous state directly (but perhaps indirectly through the other component of the exogenous

shock). Assuming that there is a shock to endowments and/or dividends that satisfies these prop-

erties we can modify Duggan’s proof to fit our framework and prove that recursive equilibria always

exist if borrowing against future labor income is not possible. To the best of our knowledge this is

the first general existence result for stochastic models with overlapping generations and borrowing

constraints. Citanna and Siconolfi (2010, 2012) prove the generic existence of recursive equilibria

for complete as well as incomplete markets, yet they need to assume a very large number of het-

erogeneous agents per generation and their proof cannot be extended to models with borrowing

constraints.

In this paper we focus on pure exchange economies. The introduction of a neoclassical production

sector is straightforward – however our existence result that relies on a gross-substitute property does

not carry over. The existence of recursive equilibria in production economies is an open question

for future research.

The rest of the paper is organized as follows: In Section 2 we introduce the model. We start our

analysis, in Section 3, with a simple example in which markets are complete and there are finitely

many shocks. In Section 4 we give a general definition of recursive equilibrium. In Section 5 we

prove the existence of recursive equilibrium under a gross-substitutes assumption on preferences. In

Section 6 we prove existence under assumptions that make the state transition norm-continuous.

2 Model

Time is indexed by t ∈ N0. Exogenous shocks zt ∈ Z realize in a complete, separable metric space

Z, and follow a first-order Markov process with transition probability P(.|z) defined on the Borel

σ-algebra Z on Z, that is P : Z×Z → [0, 1]. By a standard argument one can construct a filtration

(Ft) so that (zt) is an Ft-adapted stochastic process. A history of shocks up to some date t is

denoted by zt = (z0, z1, . . . , zt) and is also called a date event. Whenever convenient we simply use

t instead of zt. To indicate that zτ is a successor of zt or that zτ = zt, we write zτ � zt. We write

(xt) to denote an Ft-adapted stochastic process.

We consider an exchange economy with overlapping generations. At each date event H agents

enter the economy and live for A periods. An agent is identified by the date event of his birth, zt,
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and his type, h ∈ H = {1, . . . ,H}. Agent (zt, h) consumes and receives endowments at all date

events zt+a−1 � zt, where a ∈ {1, . . . , A} denotes the age of the agent. At a given date event zt

we can uniquely identify agents who consume at that date event by their age and type, (a, h). We

denote the set of all these agents by A = {(a, h) : 1 ≤ a ≤ A, h ∈ H} and the set of all agents except

for generation i by A−i = A \ {(a, h) : a = i, h ∈ H}. We will use (a, h) and (zt, h) interchangeably

to refer to a specific agent.

At each date event there are L perishable commodities, l ∈ {1, ..., L}, available for consumption.

We denote individual endowments by ωa,h(zt) ∈ RL++ and assume that they are positive, time-

invariant, and measurable functions of the current shock alone. Endowments of agent (a, h) can

be decomposed into two components, both time-invariant and measurable functions of the shock,1

that is

ωa,h(zt) = ea,h(zt) + fa,h(zt) for all zt.

We assume that all endowments are bounded, and we call the two components f -endowments and

e-endowments respectively. The f -endowments are tangible resources that can be pledged to finance

consumption and asset purchases at a time before they are received. In contrast, the e-endowments

are non-pledgeable. This formulation generalizes to two widely used modelling assumptions. If

ea,h(z) = 0 for all (a, h) and all z, the model reduces to the standard model without market

imperfections. If fa,h(z) = 0 for all (a, h) and all z, then agents cannot borrow against future

endowments and all borrowing must be collateralized by the tree (see Chien and Lustig (2010) or

Gottardi and Kubler (2013)).

We take the consumption space to be the space of adapted and essentially bounded processes.

Each agent has a time-separable utility function

Uzt,h(x) = u1,h (xt) + Et

[
A−1∑
a=1

(Πa
j=1δj+1,h(zt+j))ua+1,h (xt+a)

]
,

where xt+a ∈ RL+ denotes (stochastic) consumption of agent (zt, h) at date t + a, and x denotes

consumption over the lifecycle

x = {x(zt+a)}0≤a≤A−1,zt+a�zt .

The possibly stochastic discount factors are assumed to be measurable functions bounded below by

δ > 0 and above by δ < ∞, δa,h : Z → [δ, δ], and might vary with age and type.2 The Bernoulli-

functions ua,h : RL++ → R are assumed to be C2 on RL++, strictly increasing, strictly concave, and

satisfy an Inada condition: for all x ∈ RL+ \ RL++ along any sequence xn → x, ‖Dxua,h(xn)‖ → ∞.

1Note that this does not imply that endowments are first-order Markov as the shock is, they may well be higher-

order Markov.
2For an application with stochastic discount factors, see Krusell and Smith (1997) who use this modelling device

to match the wealth distribution.
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There is a Lucas tree in unit net supply paying dividends d(zt) ∈ RL+, d(zt) > 0. Dividends

are a function of the shock alone, so d(zt) = d(zt) for some measurable function d : Z → RL+
that is bounded above. At time t = 0, in addition to the H new agents (z0, h), h ∈ H, there are

individuals of each age a = 2, . . . , A and each type h = 1, . . . ,H present in the economy. We denote

these individuals by (z1−a, h) for h = 1, . . . ,H and a = 2, . . . , A. They have initial tree holdings,

θz1−a,h(z−1), summing up to one:
A∑
a=2

θz1−a,h(z−1) = 1.

These holdings determine the ‘initial condition’ of the economy. The aggregate endowment in the

economy is the sum of dividends and endowments ω̄(zt) = ω̄(zt) = d(zt) +
∑

(a,h)∈A ωa,h(zt).

We define an Arrow–Debreu equilibrium to be a process of Ft-adapted (probability adjusted)

prices and choices,

(
pt,
(
x(a,h),t

)
(a,h)∈A

)∞
t=0

such that markets clear and agents optimize, that is (A) and (B) hold.

(A) Market clearing equations: ∑
(a,h)∈A

xa,h(zt) = ω̄(zt), for all zt.

(B) For each zt and h = 1, . . . ,H, individual (zt, h) maximizes utility:

xzt,h ∈ arg max
x≥0

Uzt,h(x) s.t. the constraints (i) and (ii).

(i) Budget constraint:

Et

[
A−1∑
a=0

p(zt+a) · x(zt+a)

]
≤ Et

[
A−1∑
a=0

p(zt+a) · ωa+1,h(zt+a)

]
<∞.

(ii) Borrowing constraint at each age j = 1, ..., A− 1:

Et+j

A−1∑
a=j

p(zt+a) · (x(zt+a)− ea+1,h(zt+a))

 ≥ 0.

The utility maximization problems for the agents who are initially alive at t = 0 (namely (zk, h)

with k ∈ {−(A − 1), . . . ,−1}, h ∈ H) are analogous to the optimization problems for the other

agents ((zt, h) with t ≥ 0, h ∈ H), except that they have a shorter planning horizon and (i) now

includes the value of their claims to the infinite dividend stream of the tree. An agent ‘born’ at

time k < 0 still consumes until period A− 1 + k and faces the budget constraint

E0

[
A−1+k∑
t=0

p(zt) · x(zt)

]
≤ E0

[
A−1+k∑
t=0

p(zt) · ωt−k,h(zt) +
+∞∑
t=0

p(zt) · d(zt)θzk,h(z−1)

]
<∞.
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Constraint (ii) is non-standard and reflects the inability of agents to use their future e-endowment

for current consumption or investment. Chien and Lustig (2010) introduce this form of limited en-

forceability, show equivalence between this definition and a definition of sequential equilibrium with

collateral constraints on short sales of Arrow securities, and discuss its asset pricing implications.

3 A simple example

To motivate the following analysis it is useful to first discuss the simplest version of the model in

some detail. For this section, we assume that Z = {1, . . . , Z} is a finite set and that all endowments

can be pledged, that is ωa,h(z) = fa,h(z) for all (a, h) and all z. We use π(z′|z) to denote P({z′}|z),

π(zt) to denote the probability of history zt, Σ to denote the event tree, and σ = zt for a typical

element of Σ.

Demange (2002) shows that in the presence of a Lucas tree, Arrow–Debreu equilibrium in this

model is always Pareto-efficient. As Kehoe et al. (1992) point out, the equilibrium allocation can

then be obtained as the solution to a planner’s problem. In fact, the presence of a Lucas tree

ensures that there must exist summable Pareto weights {ηzt,h}zt∈Σ,h∈H such that Arrow–Debreu

equilibrium allocations satisfy

(xzt,h)zt∈Σ,h∈H = arg max
x≥0

∑
zt∈Σ,h∈H

π(zt)ηzt,hUzt,h(xzt,h) s.t.
∑

zt∈Σ,h∈H

xzt,h(σ) ≤ ω̄(σ) for all σ ∈ Σ.

Since we assume time-separable expected utility, we can characterize equilibrium also by using

instantaneous Negishi weights, λ(zt) = (λa,h(zt))(a,h)∈A, which we define by

λ1,h(zt) = ηzt,h, λa,h(zt) = λa−1,h(zt−1)δa,h(zt), a = 2, ..., A.

Individuals’ consumption is then given as a function X : Z × RAH++ → RAHL+ of the shock and the

instantaneous weights with

X(z, λ) = arg max
x∈RAHL+

∑
(a,h)∈A

λa,hua,h(xa,h) s.t.
∑

(a,h)∈A

xa,h ≤ ω̄(z). (1)

Note that for a given z, X(z, .) is a continuous function. For a process of instantaneous Negishi

weights (λ(zt))zt∈Σ, λ(zt) ∈ RAH++ for all zt, we define for each node zt, xa,h(zt) := Xa,h(zt, λ(zt)).

Then a sequence of instantaneous weights

(
(λa,h(zt))(a,h)∈A

)
zt∈Σ

characterizes an Arrow–Debreu equilibrium if the following two conditions hold.

• Evolution of instantaneous weights:

For all h ∈ H, all a = 2, ..., A, and all zt ∈ Σ, it holds that λa,h(zt) = δa,h(zt)λa−1,h(zt−1).
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• Budget constraints:

Defining the budget of agent (a, h) at node zt for all h ∈ H recursively by

wA,h(zt) := DxuA,h(xA,h(zt)) ·
(
xA,h(zt)− ωA,h(zt)

)
, and for a = 1, ..., A− 1 by

wa,h(zt) := Dxua,h(xa,h(zt))·
(
xa,h(zt)− ωa,h(zt)

)
+
∑

zt+1�zt
π(zt+1|zt)δa+1,h(zt+1)wa+1,h(zt+1),

it holds for all h ∈ H that w1,h(zt) = 0.

Note that the budgets wa,h(zt) are functions of λ(zt) as they are functions of xa,h(zt) = Xa,h(zt, λ(zt)).

It is easy to verify that for a sequence of instantaneous Negishi weights that satisfies the above con-

ditions, there exist initial conditions and an Arrow–Debreu equilibrium,(
p̄(zt),

(
x̄a,h(zt)

)
(a,h)∈A

)
zt∈Σ

,

with x̄a,h(zt) = Xa,h(zt, λ(zt)).

Equilibrium prices are unique up to a normalization. Since by the definition of the Negishi problem

in (1), λa,h(zt)Dxua,h(xa,h(zt)) are identical across all agents (a, h) ∈ A, a convenient way to express

Arrow–Debreu prices as a function of Negishi weights is to define p(zt) = λ1,1(zt)Dxu1,1(x1,1(zt)).

3.1 Recursive equilibria

Using Negishi’s approach to compute equilibria is useful only if the instantaneous Negishi weights

follow a Markov process. In this case, one can numerically approximate their transition and the

consumption allocation can be easily computed from (1). In our definition of recursive equilibrium

below, we require slightly more in that we want the instantaneous weights of the agents that enter

the economy to depend only on the weights of the currently alive. The weight of the old in the

last period should play no role in this. This is in the spirit of recursive methods where the current

endogenous state typically depends only on current variables determined in the previous period. We

therefore use discounted previous-period instantaneous Negishi weights of the non-newborn agents as

the endogenous state. We refer to these as recursive weights and denote them by λ̃ = (λ̃a,h)(a,h)∈A−1
.

Note that, for the complete-markets case that we are currently considering, the instantaneous weight

of a (non-newborn) agent is just equal to his recursive weight, which will no longer be the case

when we consider borrowing-constraint economies where the instantaneous weight is larger than the

recursive weight whenever the borrowing constraint binds.

As policies are homogeneous of degree zero in recursive Negishi weights, we can normalize the

state to lie in the (A−1)H−1 dimensional unit simplex, ∆(A−1)H−1 = {x ∈ R(A−1)H
+ :

∑(A−1)H
i=1 xi =

1}. Since agents are finitely lived, our assumptions on the utility function imply in fact that we can

focus attention on a closed set Λ ⊂ ∆(A−1)H−1 with Λ ⊂ R(A−1)H
++ . The state space is then S = Z×Λ

with a typical element s = (z, λ̃). Given λ̃, we denote by γ1,h : S → R+ the function mapping the
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state into the instantaneous Negishi weights of the newborn of type h. Note that in addition to

the endogenous state λ̃, the instantaneous Negishi weights of the newborn are needed to determine

consumption, X : Z× RAH++ → RAHL+ , defined by (1). To define recursive equilibrium, we first need

to write the budget set recursively. We denote by Wa,h(s) the value of an agent’s current and future

consumption in excess of his individual endowments (in a sequential formulation, this will simply

be his financial wealth). We define a recursive equilibrium to consist of functions γ1 : S→ RH+ and

W : S→ RAH such that for all s ∈ Z×Λ, and for all h ∈ H,

WA,h(s) = DxuA,h(XA,h(z, λ)) · (XA,h(z, λ)− ωA,h(z))

Wa,h(s) = Dxua,h(Xa,h(z, λ)) · (Xa,h(z, λ)− ωa,h(z)) +
∑
z′

π(z′|z)δa+1,h(z′)Wa+1,h(s′), a = 1, ..., A− 1

W1,h(s) = 0

where

λ =
(

(γ1h(z, λ̃))h∈H, λ̃
)

s′ = (z′, λ̃′) with λ̃′ā,h̄ =
δā,h̄(z′)λā−1,h̄∑

(a,h)∈A−1
δa,h(z′)λa−1,h

for all (ā, h̄) ∈ A−1, and with λ̃′ ∈ Λ.

It is easy to verify that a recursive equilibrium, if it exists, describes an Arrow–Debreu equilibrium.

We discuss the existence of recursive equilibrium in Section 4. For now, we take its existence

for granted and point out the computational advantages of using recursive Negishi weights as the

endogenous state variable.

3.2 Computation

We describe and discuss a simple time iteration collocation method to numerically approximate

recursive equilibria. Time iteration is one of several standard approaches to solving dynamic models

(see e.g., Section 7.2. of Judd et al. (2003) or Krueger and Kubler (2004)). Obviously there are

several other approaches which have advantages and disadvantages compared to time iteration (see

in particular Rios-Rull (1996)). However, we choose to discuss this algorithm because it allows for

a simple comparison of our approach to the conventional approach of doing time iteration using

the natural state space. It also serves as a basis for computing large-scale models in practice.

We conjecture that our Negishi approach can also be usefully employed with other computational

methods such as the linearization technique in Rios-Rull (1996) or perturbation methods.

We take as given that the functions X(z, λ) can be approximated with high accuracy and

negligible computational cost. For standard calibrations that assume identical homothetic utility

this function is linear after a change of variable. For the case of one commodity there are several

other classes of preferences for which closed-form solutions are known.

We assume that the unknown functions W (z, λ̃) and γ1,h(z, λ̃) can be well approximated by some
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Ŵ (z, λ̃) and γ̂(z, λ̃) that are uniquely determined by the requirement that Ŵa,h(z, λ̃i) = Wa,h(z, λ̃i)

and γ̂h(z, λ̃i) = γh(z, λ̃i) for all z ∈ Z and some finite number G of so-called ‘collocation points’

λ̃i ∈ G ⊂ ∆(A−1)H−1, i = 1, ..., G. Examples of interpolation schemes used for collocation include

splines as in Judd et al. (2003), Smolyak polynomials as in Krueger and Kubler (2004), Delaunay

interpolation as in Brumm and Grill (2014), and piecewise multi-linear (hierarchical) basis functions

on (adaptive) sparse grids as in Brumm and Scheidegger (2013). The main steps of the algorithm

are as follows:

1. Set n = 0 and start with an initial guess Ŵ 0 : Z×Λ→ RAH .

2. Given Ŵn, for each z ∈ Z and each λ̃i ∈ G, compute γ̂n+1(z, λ̃i) as a solution to the system

of equations

Dxu1,h(X1,h(z, λi)) · (X1,h(z, λi)− ω1,h) +
∑
z′

π(z′|z)δ2,h(z′)Ŵn
2,h(z′, λ̃′(z′)) = 0, h ∈ H, (2)

where

λi = (γ̂n+1(z, λ̃i), λ̃i) and λ̃′ā,h̄(z′) =
δā,h̄(z′)λi

ā−1,h̄∑
(a,h)∈A−1

δa,h(z′)λia−1,h

for all (ā, h̄) ∈ A−1.

3. For each z ∈ Z and each λ̃i ∈ G, let λi and λ̃′(z′) be given as before and compute for all

(a, h) ∈ A

Ŵn+1
a,h (z, λ̃i) = Dxua,h(Xa,h(z, λi))·(Xa,h(z, λi)−ωa,h)+

∑
z′

π(z′|z)δa+1,h(z′)Ŵn
a+1,h(z′, λ̃′(z′)),

where Ŵn+1
A+1,h(z, λ̃i) := 0.

4. For each z ∈ Z, interpolate {Ŵn+1(z, λ̃i), i = 1, ..., G} to obtain approximating functions

Ŵn+1(z, .).

5. Check some error criterion. If the error criterion is not met, increase n by 1 and go to 2.

6. Set Ŵ ∗ = Ŵn+1 and interpolate γ̂n+1(z, λ̃i) to obtain γ̂∗(z, .).

In general, the system of equations (2) might have no solutions, or it might have several solutions.

Furthermore, there is no guarantee that Ŵn converges as n tends to infinity. This is obvious as

there is generally no guarantee that a (recursive) equilibrium exists. Feng et al. (2013) develop a

method which can be used to compute ‘generalized Markov equilibria’, which in our setup would

be equilibria that are recursive in (λ̃,W ). However, for reasonable values of A the method is not

applicable as it suffers from a severe curse of dimensionality.

In this simple framework with complete markets, it is clear that using recursive Negishi weights

as the endogenous state variable has important advantages over the ’standard’ approach that uses

11



beginning-of-period financial wealth.3 Most strikingly, the computational complexity barely in-

creases with the number of goods, L. Only the computation of X(z, λ) and of Dxua,h(X(z, λ))

depends on L. This is in stark contrast to the case of financial wealth as endogenous state vari-

able where one needs to solve for spot-prices and allocations simultaneously with portfolios and

asset-prices.

Even for the case of a single commodity the Negishi approach has three important advantages

over conventional methods: First, as policies are homogeneous of degree zero in recursive Negishi

weights, policy functions may be defined over the (A− 1)H − 1 dimensional unit simplex (for given

states today and tomorrow). Thus the admissible set is simple and can easily be worked with,

while it can be arbitrarily complicated in the case of the natural state space. Since agents do not

face borrowing constraints, young agents typically borrow substantial amounts and one thus has to

determine the ‘natural’ borrowing limits as one step of the computations. For models with large H

and/or A this can result in substantial difficulties. Second, along the time iteration the only costly

computation consists in solving for γ̂(z, λ̃i) in Step 2 above. For each z and λ̃i, this is a non-linear

system of H equations in as many unknowns. In contrast, for the case of financial wealth, one needs

to solve all agents’ first order conditions plus market clearing conditions simultaneously to obtain

optimal choices and prices. This results in (A−1)HZ equations for each z and λ̃i (if market clearing

conditions are used to express one agent’s portfolio in terms of all others’). Even for moderate A

and Z this can be an order of magnitude larger, thus an enormous efficiency gain can be realized if

recursive Negishi weights are used. Note also that the dynamics of the economy are fully captured

by the HZ functions (γh(z, .))z∈Z,h∈H. If financial wealth is used instead, one needs to keep track of

(A− 1)HZ2 functions, for each current shock z mapping financial wealth of all generations but the

oldest into their financial wealth at all successor nodes. Thus, the Negishi approach reduces both

the number of equations that have to be solved simultaneously and the number of functions that

are needed to characterize equilibrium dynamics by a factor of (A − 1)Z. Third, error analysis is

trivial to conduct if we use recursive weights. As mentioned above, the error in computing X(z, λ)

can typically be taken to be negligible. Given a transition γ̂, the errors in the computation of Ŵ

are pure function-approximation errors and there are reliable methods to bound them above. As

explained for example in Kubler and Schmedders (2005) it is generally impossible to find bounds

on how close a computed approximation is to an exact equilibrium. In the current context, it is

impossible to determine how close the computed evolution of λ is to the exact equilibrium evolution.

However, given approximations Ŵ and γ̂ for the unknown policy functions, the only relevant error

is

MAXERR = sup
h∈H,z∈Z,λ̃∈R(A−1)H

++

‖Ŵ1,h(z′, γ̂(z, λ̃)) ·
(
∂ua,h(Xa,h(s, λ))

∂x1

)−1

‖.

3Note that in OLG models the assumption of complete markets does not simplify the analysis as much as in

models with infinitely lived agents, because agents cannot trade before birth.
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This error can be interpreted as the maximal transfer necessary to turn the computed allocation

into an equilibrium allocation. That is, while we cannot guarantee in general that the computed

allocation is close to an exact equilibrium allocation, it is always close to an equilibrium allocation

of an economy with transfers. The size of the transfers is bounded by MAXERR. Kubler and

Schmedders (2005) suggest a similar interpretation for the case of the natural state. However, in

their method one needs to transform the error in the computation into an error that has an economic

interpretation. Using recursive Negishi weights as the state variable has the advantage that the error

in the computation translates directly to an interpretable approximation error.

4 Negishi’s approach in borrowing-constrained economies

We now turn to the general model where we allow for positive e-endowments and for a more general

shock structure. We first characterize Arrow–Debreu equilibria in terms of instantaneous Negishi

weights and then use this characterization to define recursive equilibrium.

Note that individuals’ consumption as a function of instantaneous Negishi weights and the

shock, X(z, λ) as defined in (1), is continuous in λ for a given z, and measurable in (z, λ) by the

Measurable Maximum Theorem (see Theorem 18.19 in Aliprantis and Border (2006)). Given any

Ft-adapted process of instantaneous Negishi weights (λt) with λ(zt) ∈ RAH++ for all zt, we write

for each zτ , xa,h(zτ ) = xa,h(zτ ; (λt)) = Xa,h(zτ , λ(zτ )). By definition of Xa,h(z, .) we have that

λa,h(zτ )Dxua,h(xa,h(zτ )) is identical across all agents (a, h) ∈ A. For each h ∈ H, we define

wA,h(zτ , (λt)) = λA,h(zτ )DxuA,h(xA,h(zτ )) · (xA,h(zτ )− ωA,h(zτ ))

and for all a = 1, ..., A− 1

wa,h (zτ ; (λt)) = λa,h(zτ )Dxua,h(xa,h(zτ )) · (xa,h(zτ )− ωa,h(zτ )) +

∫
wa+1,h(zτ+1, (λt))dP(zτ+1|zτ ).

Using e-endowments instead of total endowments, we define for each h ∈ H

vA,h (zτ ; (λt)) = Dxua,h(xa,h(zτ )) · (xa,h(zτ )− ea,h(zτ )),

and for a = 1, ..., A− 1,

va,h (zτ ; (λt)) = Dxua,h(xa,h(zτ ))·(xa,h(zτ )−ea,h(zτ ))+

∫
δa+1,h(zτ+1)va+1,h

(
zτ+1, (λt)

)
dP(zτ+1|zτ ).

Given an Arrow–Debreu equilibrium with consumption allocation (x(a,h),t) it is clear that there

exists a unique λ(z0) ∈ ∆AH−1 and for each date event zt, t > 0 a unique λ(zt) ∈ R(AH)
++ such

that: for all (a, h) ∈ A−1, we have λa,h(zt) ≥ δa,h(zt)λa−1,h(zt−1), where the inequality holds as an

equality for at least one (a, h), and for all zt

x(zt) ∈ arg max
∑

(a,h)∈A

λa,h(zt)ua,h(xa,h) s.t.
∑

(a,h)∈A

xa,h − ω̄(zt) ≤ 0.
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Note that we can take p(zt) = λ1,1(zt)Dxu1,1(x1,1(zt)) — at least one agent must be unconstrained

between node zt−1 and node zt and thus prices must be equal to this agent’s marginal rates of

substitution. By the agents’ budget constraints, we must have that the equilibrium process of

weights, (λt), satisfies

w1,1 (zτ ; (λt)) = 0 for all zτ . (3)

Furthermore note that for any zτ+1 and any (a, h) ∈ A−A

δa+1,h(zτ+1)Dxua,h(xa+1,h(zτ+1))

Dx1u
′
a,h(xa,h(zτ ))

6= p(zτ+1)

p(zτ )
only if va+1,h(zτ+1; (λt)) = 0.

Therefore the borrowing constraint implies that for all (a, h) ∈ A−1 and all zτ

va,h (zτ ; (λt)) ≥ 0, (λa,h(zτ )− δa,h(zτ )λa−1,h(zτ−1))va,h (zτ ; (λt)) = 0. (4)

What is important for our analysis is that the converse is also true, namely that any sequence of

instantaneous weights that satisfy (3) and (4) describes an Arrow–Debreu equilibrium. If (zt, λt)

follows a Markov process it suffices to numerically approximate the transition for λ and then back

out the equilibrium allocations and prices from the transition. The following lemma formalizes the

claim.

Lemma 1 Given a process of instantaneous Negishi weights, (λt), that satisfies for all zt, t > 0, and all

(a, h) ∈ A−1,

λa,h(zt) ≥ δa,h(zt)λa−1,h(zt−1),

suppose that (3) and (4) hold. Then there exist initial conditions, θa,h(z−1), and an Arrow–Debreu

equilibrium, (xt, pt), such that for all zt the consumption allocation and prices are given by

x(zt) = X(zt, λ(zt)), p(zt) = λ1,1(zt)Dxu1,1(x1,1(zt)).

Proof. By construction, x(zτ , (λt)) satisfies market-clearing and all agents’ budget constraints. We

need to prove that each agent maximizes utility subject to the budget and borrowing constraints.

For each agent (zt, h) we define the Lagrangian associated with his optimization problem as

L(x, `) = − Uzt,h(x) + `0 Et

[
A−1∑
a=0

p(zt+a) · (x(zt+a)− ωa+1,h(zt+a))

]

− Et

A−1∑
j=1

`j(z
t+j)

<∑
a=j

A− 1p(zt+a) · (x(zt+a)− ea+1,h(zt+a))

 .
Therefore, ∂L(x, `)/∂x(zt+a) is given by

−Et
[
(Πa

j=1δj+1,h(zt+j))Dxua+1,h(xa+1,h(zt+a)
]

+ `0 Et
[
p(zt+a)

]
− Et

 a∑
j=1

`j(z
t+j)p(zt+a)


= Et

Dxua+1,h(xa+1,h(zt+a)

−(Πa
j=1δj+1,h(zt+j)) + λa+1,h(zt+a)

`0 − a∑
j=1

`j(z
t+j)

 ,
14



where we used that p(zt) = λ1,1(zt)Dxu1,1(x1,1(zt)) = λa,h(zt)Dxua,h(xa,h(zt)) for all (a, h)—the

first equality is just our definition of p(zt) while the second equality follows from x(zt) = X(zt, λ(zt)).

To satisfy ∂L(x, `)/∂x(zt+a) = 0 for all 0 ≤ a ≤ A−1, zt+a � zt we thus have to define `∗0 = 1
λ1,h(zt)

and for a = 1, ..., A− 1,

`∗a(z
t+a) =

(
1

δa+1,h(zt+a)λa,h(zt+a−1)
− 1

λa+1,h(zt+a)

)
(Πa

j=1δj+1,h(zt+j)).

Clearly, (x, `∗) is then a saddle point for L. Therefore x must be an optimal solution to the agent’s

maximization problem (see e.g., Luenberger (1969) Chapter 8.4). �

4.1 Definition of recursive equilibrium

In a model with borrowing constraints, the recursive weights that we use as the endogenous state

are no longer equal to the instantaneous weights of the (non-newborn) agents. They are rather

the discounted previous-period instantaneous Negishi weights of the currently alive. To determine

the instantaneous weights from the recursive weights, we need to solve functional equations that

represent the borrowing constraints. The formal details are as follows.

We fix an endogenous state space Λ ⊂ ∆(A−1)H−1 and take S = Z × Λ. A recursive equilibrium

consists of measurable ‘value’-functions

W : S→ RAH , V : S→ RAH+ ,

as well as ‘policy’-functions

γ : S→ RAH+ ,

such that the following functional equations hold for all s = (z, λ̃) ∈ S:

Wa,h(s) = λa,h

(
Dxua,h(Xa,h(z, λ)) · (Xa,h(z, λ)− ωa,h(z)) +

∫
δa+1,h(z′)

λ̃′a+1,h

Wa+1,h(s′)dP(z′|z)

)

Va,h(s) = Dxua,h(Xa,h(z, λ)) · (Xa,h(z, λ)− ea,h(z)) +

∫
δa+1,h(z′)Va+1,h(s′)dP(z′|z)

for all (a, h) ∈ A, where WA+1,h(s) = VA+1,h(s) = 0 for all s, and

λ =
(

(γ1h(z, λ̃))h∈H, (λ̃a,h + γa,h(z, λ̃))(a,h)∈A−1

)
s′ = (z′, λ̃′) with λ̃′ā,h̄ =

δā,h̄(z′)λā−1,h̄∑
(a,h)∈A−1

δa,h(z′)λa−1,h
for all (ā, h̄) ∈ A−1, and λ̃′ ∈ Λ

W1,h(s) = 0 for all h ∈ H

Va,h(s) ≥ 0, γa,h(s) · Va,h(s) = 0 for all (a, h) ∈ A−1.

Again, given our discussion above, it is easy to see that a recursive equilibrium, if it exists, describes

an Arrow–Debreu equilibrium. Note that the definition of W somewhat differs from the definition

of w(zτ , (λt)) above — since we normalize λ̃ to lie in the unit simplex, we need to ‘undo’ the

normalization to obtain a correct price-system.
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4.2 Computation

In Section 3.2 we showed for the case of unconstrained borrowing that there are several compu-

tational advantages of using instantaneous Negishi weights rather than financial wealth as a state

variable. Even in the presence of borrowing constraints, most of these advantages remain. Com-

putational complexity still barely increases in the number of goods, also the state space remains a

unit simplex, and the approximation errors have the same straightforward interpretation. However,

we now have to solve for the V -functions which involves a non-linear complementarity problem of

size H(A − 1). Thus, in contrast to the case of unconstrained borrowing, the size of the system

now depends on A. Yet in contrast to the case of financial wealth as the state variable, the size of

the system still does not depend on S. Moreover, for many realistic calibrations one can expect

the borrowing constraint to bind rarely for older generations which effectively makes the size of the

system that is to be solved smaller.

4.3 Existence

In general, the existence of recursive equilibria in non-optimal economies is an open problem. For

the case of beginning-of-period asset holdings as the endogenous state, Kubler and Polemarchakis

(2004) provide simple counter-examples which show that one cannot hope for general existence

proofs. Citanna and Siconolfi (2010) have the important insight that with sufficiently many agents

per generation recursive equilibrium must exist generically in a model without borrowing constraints.

In Citanna and Siconolfi (2012) they show that the same argument is applicable for models with

incomplete markets. They prove their result using the natural state space, but it seems likely that

a similar approach can be used to prove the generic existence of equilibria with Markovian Negishi

weights as long as there are no borrowing constraints (i.e. e-endowments are zero). However, we

want to use the fact that Negishi weights are Markov to approximate equilibria using Negishi’s

method in models where agents live for many periods. In this case, the number of agents needed

for Citanna and Siconolfi’s result to apply becomes astronomical very quickly (they assume finitely

many shocks and require more than ZA agents, so even with only two exogenous shocks and 60-

period-lived agents, one needs more than 1018 agents per generation). The use of their approach to

tackle models with a continuum of ex ante identical agents within each generation is a subject for

further research; for many other models it seems of limited practical relevance. From a theoretical

point of view our existence results can be thought of as being complementary to Citanna and

Siconolfi’s result: Their method assumes few shocks relative to the number of agents, we fix the

number of agents but require shocks to be continuous or make strong assumptions on preferences.

In this paper we provide two approaches to prove the existence of recursive equilibria. A first

approach is to take as given that Arrow–Debreu equilibria always exist for arbitrary initial instan-

taneous weights. This can be shown with standard techniques (see, e.g., Kubler and Polemarchakis
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(2004) or for a more general shock-structure Aliprantis et al. (1990) or Florenzano et al. (2001)).

Recursive equilibria might fail to exist because for a given (z, λ̃) there are multiple Arrow–Debreu

equilibria and given different histories different ones must be chosen to be consistent with intertem-

poral optimality. The problem can be solved by making strong enough assumptions on fundamentals

that guarantee the uniqueness of continuation equilibria. Following Kehoe et al. (1991) and Dana

(1993) it is well known that the assumption of gross substitutes often leads to strong uniqueness

results. However, Azariadis and Lambertini (2003) show that, in models with overlapping gen-

erations and enforcement constraints, a multiplicity of equilibria can arise even when preferences

satisfy a gross-substitutes assumption. It turns out that since in our model borrowing constraints

are exogenous the assumption suffices to guarantee uniqueness — we will formalize this in Section

5 below.

A natural second approach tries to use a version of Schauder’s fixed point theorem for infinite

dimensional spaces to prove the existence of a solution to the functional equation that defines recur-

sive equilibrium. Given functions W ′(z, λ̃) and V ′(z, λ̃) for next period, the equilibrium conditions

determine functions W and V as well as γ(.) for the current period. The problem is that generally

the fact that V ′ and W ′ are continuous functions in λ̃ will not be enough to guarantee that W and

V will be continuous functions — the possible multiplicity of solutions makes it unlikely that there

exists a continuous selection. However, once one drops continuity of V ′ and W ′, one will generally

not be able to show that a γ, V , and W exist for this period that satisfy the equilibrium assump-

tions. A large literature on existence of Markov perfect Nash equilibrium in stochastic games offers

a clever solution to this problem. If probability distributions are non-atomic and if the action this

period affects the probability distribution over the state next period in a continuous fashion, then

the conditional expectation of next period’s value function will be continuous in actions today, even

if it is discontinuous in the state tomorrow (see e.g., Nowak and Raghavan (1992)). This assump-

tion is referred to as norm-continuous transition. In Section 6 we provide conditions under which

the endogenous state transition in a recursive equilibrium of our model is norm-continuous. Under

these conditions, we prove the existence of a recursive equilibrium by adapting the proof strategy

of Duggan (2012) to our setup.

5 Existence with gross substitutes

We show that under a gross-substitutes assumption recursive equilibria always exist. In Pareto

optimal exchange economies Arrow–Debreu equilibria are unique, if all goods are pairwise gross

substitutes (see Kehoe et al. (1991)). However, it is far from obvious that this is a sufficient

condition in the presence of borrowing constraints (see Azariadis and Lambertini (2003)) and over-

lapping generations. Gottardi and Kubler (2013) consider an exchange economy with infinitely

lived agents and a single commodity and their borrowing constraints are equivalent to ours if we set
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f -endowments to zero. They show that the assumption of gross substitutes guarantees existence of

recursive equilibria (also using recursive weights as a state variable). It turns out that the presence

of f -endowments and overlapping generations pose substantial additional difficulties.

To prove existence of recursive equilibria in our model we first need to modify the assumption of

gross substitutes for our framework. Dana (1994) shows that with an infinite number of goods, it is

more convenient to work with the gross-substitutes property on so-called ‘excess utility functions’ —

Dxua,h(Xa,h(z, λ)) · (Xa,h(z, λ)− ωa,h(z)) in our notation — rather than excess demand functions.

For this case, it is useful to define the property as follows (note that the inequality is in the opposite

direction compared to the demand case).

Definition 1 A function F : Rm+ → Rm satisfies the strict gross-substitutes property if for all y ∈ Rm+
and all x ∈ Rm+ \ {0} with xi = 0 for some i = 1, ...,m it holds that Fi(y) > Fi(y + x). It satisfies the

weak gross-substitutes property if the inequality holds weakly.

We define the set of fundamentals, F ⊂ RL++, to be the set of all possible realization of endowments

and dividends, i.e. F = {ea,h(z), fa,h(z), d(z); (a, h) ∈ A, z ∈ Z}. The gross-substitutes assumption

can then be formulated as follows.

Assumption 1 For all agents (a, h) and all shocks z ∈ Z, the function Dxua,h(Xa,h(z, λ)) ·Xa,h(z, λ)

satisfies the weak gross-substitutes property in λ. Moreover, for each y ∈ F \ {0} the function

−Dxua,h(Xa,h(z, λ)) · y satisfies the strict gross-substitutes property in λ.

For the case of time-separable utility and a single good per date event, it is easy to see that this

assumption is satisfied whenever all agents’ relative risk aversion is less than or equal to one — with

one commodity one only needs to ensure that cu′(c) is increasing in c, concavity always ensures

that yu′(c) is decreasing in c. In our setup with several commodities, however, utility is no longer

separable between goods, even if it is time-separable. Assumption 1 can thus become more difficult

to verify, yet there are two important special cases for which it is clearly satisfied. First, if utility

is separable across all commodities, i.e. for all (a, h) we have ua,h(x) =
∑

l ûa,h,l(xl) for some

concave functions ûa,h,l(.), then Assumption 1 obviously reduces to
û′′a,h,l(xl)

û′a,h,l(xl)
≤ 1. Second, and more

interestingly, if for each (a, h) utility can be written as

ua,h(x) =

(∑
l

xζ
1

l

)ζ2
a,h

with ζ1, ζ2
a,h ∈ (0, 1), (5)

then Assumption 1 also holds, as we now show. Given this per-period utility function, the definition

of X(z, λ) implies that for any good l̄ and any two agents (a, h) and (ā, h̄) the following first order

condition holds:

λa,h · ζ2
a,h ·

(∑
l

xζ
1

a,h,l

)ζ2
a,h−1

· xζ
1−1

a,h,l̄
= λā,h̄ · ζ2

ā,h̄ ·

(∑
l

xζ
1

ā,h̄,l

)ζ2
ā,h̄
−1

· xζ
1−1

ā,h̄,l̄
. (6)
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Considering Equation (6) for two different goods l and l̄ and using the aggregate resource constraint

we obtain the linear sharing rule, xa,h,l = xa,h,l̄ · ωl/ωl̄ , which we plug in Equation (6) to get:

λa,h · ζ2
a,h ·

(∑
l

(
ωl
ωl̄

)ζ1
)ζ2

a,h−1

· x
ζ1ζ2

a,h−1

a,h,l̄
= λā,h̄ · ζ2

ā,h̄ ·

(∑
l

(
ωl
ωl̄

)ζ1
)ζ2

ā,h̄
−1

· x
ζ1ζ2

ā,h̄
−1

ā,h̄,l̄
. (7)

Solving Equation (7) for xā,h̄,l̄, then summing over all agents (ā, h̄), and finally using the aggregate

resource constraint provides:

ω l̄ =
∑
ā,h̄

(
λā,h̄
λa,h

) 1

1−ζ1ζ2
ā,h̄

(
ζ2
ā,h̄

ζ2
a,h

) 1

1−ζ1ζ2
ā,h̄

(∑
l

(
ωl
ωl̄

)ζ1
) ζ2

ā,h̄
−1

(ζ2
a,h
−1)(1−ζ1ζ2

a,h
)

x

ζ1ζ2a,h−1

ζ1ζ2
ā,h̄
−1

a,h,l̄
. (8)

Now let λ ∈ R(A−1)H
++ , ∆λ ∈ R(A−1)H

+ \ {0}, and ∆λa,h = 0. Applying Equation (8) to both λ

and λ+ ∆λ implies that xa,h,l̄(λ) > xa,h,l̄(λ+ ∆λ) — the right hand side of (8) increases through

the direct effect of increasing λ to λ + ∆λ, which can only be offset by a decrease in xa,h,l̄. This

shows the first part of Assumption 1, as Dxua,h(X(z, λ)) ·X(z, λ) = ζ1ζ2
a,h

(∑
l x

ζ1

a,h,l

)ζ2
a,h increases

in xa,h,l̄. The second part of Assumption 1 is trivial. All in all, we have shown that the per-period

utility function in (5) satisfies Assumption 1. We now prove existence of recursive equilibrium under

this assumption.

Theorem 1 A recursive equilibrium exists if Assumption 1, and the assumptions on preferences, en-

dowments, and dividends stated in Section 2 are satisfied.

Under very weak assumptions on the Markov transition an Arrow–Debreu equilibrium always

exists (see Florenzano et al. (2001) for a model with continuous shocks and Kubler and Polemar-

chakis (2004) for a model with finitely many shocks). For simplicity we take as given that for all

initial λ̃ ∈ int(∆(A−1)H−1) an Arrow–Debreu equilibrium exists. This equilibrium need, however,

not be recursive.

The key to showing existence of a recursive equilibrium is to show that for given λ̃ there must

be a unique continuation. Put differently, existence of a recursive equilibrium can only fail if given

some initial shock, z0, there exist two distinct Arrow–Debreu equilibria with instantaneous Negishi

weight processes
(
λ1
t

)
6=
(
λ2
t

)
that satisfy λ̃1(z0) = λ̃2(z0). Suppose that there indeed exist two

Arrow–Debreu equilibria
(
λ1
t , λ

2
t

)
with λ1(zτ ) 6= λ2(zτ ) while λ̃1(zτ ) = λ̃2(zτ ). W.l.o.g. we can take

zτ = z0. Define λa,h(zt) = min[λ1
a,h(zt), λ2

a,h(zt)] for all (a, h) ∈ A and all zt – since both λi are

Ft-adapted so must be λ. We will show that the process of instantaneous Negishi weights (λt) does

not lead to a feasible consumption allocation, which contradicts the assumption that there exist two

equilibria
(
λ1
t

)
6=
(
λ2
t

)
as characterized above. We need the following three lemmas.
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Lemma 2 For all zt and for any (a, h) ∈ A and any y ∈ F, it must be true that

λa,h(zt)Dxua,h(Xa,h(zt, λ(zt))) · y ≤

min
[
λ1
a,h(zt)Dxua,h(Xa,h(zt, λ

1(zt))) · y, λ2
a,h(zt)Dxua,h(Xa,h(zt, λ

2(zt))) · y
]
,

where the inequality is strict whenever λ(zt) /∈ {λ1(zt), λ2(zt)}.

Proof. W.l.o.g. take λ1
a,h(zt) ≤ λ2

a,h(zt), thus λa,h(zt) = λ1
a,h(zt). Since −Dxua,h(Xa,h(z, .)) · y

satisfies the strict gross-substitutes property, we have

λa,h(zt)Dxua,h(Xa,h(zt, λ(zt))) · y ≤ λ1
a,h(zt)Dxua,h(Xa,h(zt, λ

1(zt))) · y,

where the inequality is strict if λ(zt) 6= λ1(zt). Moreover, define λ̂ by λ̂a′,h′ = λa′,h′(z
t) for (a′, h′) 6=

(a, h) and λ̂a,h = λ2
a,h(zt). By the gross-substitutes property we must have

λ2
a,h(zt)Dxua,h(Xa,h(zt, λ

2(zt))) · y ≥ λ̂a,h(zt)Dxua,h(Xa,h(zt, λ̂(zt)) · y

≥ λa,h(zt)Dxua,h(Xa,h(zt, λ(zt))) · y,

where the second inequality follows from the fact that λa,h(zt)Dxua,h(Xa,h(zt, λ(zt))) is identical

across all agents for any λ, in particular for λ̂ and λ. The first inequality holds strict if λ̂(zt) 6= λ2(zt),

which is the case if λ(zt) 6= λ2(zt). �

Lemma 3 For all zτ and all (a, h),

w1,h(zτ ; (λt)) ≥ min
[
w1,h(zτ ; (λ1

t )), w1,h(zτ ; (λ2
t ))
]

= 0. (9)

Proof. Applying Assumption 1 to

vA,h(zτ ;λt) = λA,h(zτ )DxuA,h(XA,h(zτ , λ(zτ ))) · (XA,h(zτ , λ(zτ ))− ea,h(zτ )),

we find that the following is satisfied for a = A:

va,h(zτ ; (λt)) ≥

va,h(zτ ; (λ1
t )), if λa,h(zτ ) = λ1

a,h(zτ ),

va,h(zτ ; (λ2
t )), if λa,h(zτ ) = λ2

a,h(zτ ),
for all zτ and h. (10)

We now show that if (10) holds for a+ 1, then it also does for a. Suppose w.l.o.g. that λa,h(zτ ) =

λ1
a,h(zτ ). For each zτ+1 � zτ there are two cases possible. In the first case, λ1

a+1,h(zτ+1) =

δa+1,h(zτ+1)λ1
a,h(zτ ), then λa+1,h(zτ+1) = λ1

a+1,h(zτ ), and thus va+1,h(zτ+1; (λt)) ≥ va+1,h(zτ+1; (λ1
t ))

by the induction hypothesis. In the second case, λ1
a+1,h(zτ+1) > δa+1,h(zτ+1)λ1

a,h(zτ ), then va+1,h(zτ+1; (λt)) ≥

va+1,h(zτ+1; (λ1
t )) = 0. Summing up, we find that (10) holds for a.

Again suppose w.l.o.g. that λa,h(zτ ) = λ1
a,h(zτ ). By (10) and Lemma 2, we have for all zτ and h:

wa,h(zτ ; (λt)) = va,h(zτ ; (λt))− Eτ

[
A−a−1∑
i=0

λi,h(zτ+i)Dxua+i,h(Xa+i,h(zτ+i, λ(zτ+i)) · fa+i,h(zτ+i)

]

≥ va,h(zτ ; (λ1
t ))− Eτ

[
A−a−1∑
i=0

λ1
i,h(zτ+i)Dxua+i,h(Xa+i,h(zτ+i, λ

1(zτ+i)) · fa+i,h(zτ+i)

]
= wa,h(zτ ; (λ1

t )).
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This finishes the proof. �

Finally we can state a stronger version of the lemma for the agents initially alive.

Lemma 4 For all (a, h) ∈ A−1,

wa,h(z0; (λt)) ≥ max
[
wa,h(z0; (λ1

t )), wa,h(z0; (λ2
t ))
]
, (11)

with the inequality holding strict for some (a, h) if λ(z0) /∈ {λ1(z0), λ2(z0)}.

Proof. As in Lemma 3 the value of f -endowments is smaller under λ then both under λ1 and λ2.

It must be strictly smaller if f -endowments are positive and if λ(z0) /∈ {λ1(z0), λ2(z0)}. It therefore

suffices to prove that

va,h(z0; (λt)) ≥ max
[
va,h(z0; (λ1

t )), va,h(z0; (λ2
t ))
]
. (12)

Suppose w.l.o.g. that λa,h(z0) = λ1
a,h(z0). Then (10), which we have shown in the proof of Lemma

(2), implies

va,h(z0; (λt)) ≥ va,h(z0; (λ1
t )).

To derive (12), note that λ2
a,h(z0) > λ1

a,h(z0) only if

va,h(z0; (λ2
t )) = 0 ≤ va,h(z0; (λ1

t )) ≤ va,h(z0; (λt)). (13)

Inequality (13) must hold strict for λ(z0) /∈ {λ1(z0), λ2(z0)} – if f -endowments are zero e-endowments

must be positive since we assume positive endowments. �

The equilibrium conditions require that for both i = 1, 2

w1,h(z0; (λit)) = 0,
∑

(a,h)∈A−1

wa,h(z0, (λit))− q(z0; (λit)) = 0,

where we define the cum dividend price of the tree by

q(z0; (λt)) = E0

[ ∞∑
τ=0

λ1,1(zτ )Dxu1,1(X1,1 (zτ , λ(zτ )))d(zτ )

]
.

We can thus use the above equilibrium conditions for (λ1
t , λ

2
t ) and Lemmas 2 - 4 to show that for

λ(z0) /∈ {λ1(z0), λ2(z0)}:

∑
(a,h)∈A

wa,h(z0, (λt))− q(z0; (λt)) + E0

[ ∞∑
t=1

w1,h(zt; (λt))

]
> 0, (14)

Using that λ is summable, as λ1 and λ2 are, Equation (14) implies that under λ the present value of

consumption exceeds the present value of endowments and dividends. Since this is a contradiction

to feasibility of (λt), we have proven that there cannot be two continuation equilibria and thus there

exists a recursive equilibrium.
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Finally, we have to show that we must indeed have λ(z0) /∈ {λ1(z0), λ2(z0)}: Suppose w.l.o.g.

λ1
a,h(z0) < λ2

a,h(z0) for some (a, h). Then there must be some other (ā, h̄) with λ1
ā,h̄

(z0) > λ2
ā,h̄

(z0).

To see this, suppose not, thus λ1(z0) ≤ λ2(z0). Since some agents must be unconstrained in the

equilibrium described by λ2 we must have that λ1
a,h(z0) = λ2

a,h(z0) for some (a, h). Depending on

whether a = 1 or a > 1 the strict gross-substitutes property then implies either w1,h(z0; (λ2
t )) > 0

for some h, or ∑
(a,h)∈A−1

wa,h(z0, (λ2
t ))− q(z0; (λ2

t )) > 0,

and hence λ2 cannot describe an equilibrium.

6 Existence with norm-continuous transition

In this section we focus on the version of the model where agents cannot borrow against future

endowments, that is fa,h(z) = 0 for all (a, h) ∈ A and all z ∈ Z. This assumption simplifies

the analysis considerably — it is subject to further research to extend the result to the case with

some unsecured borrowing. Furthermore, and in addition to the assumptions made in Section 2, we

assume that the exogenous state space Z can be decomposed into three complete, separable metric

spaces Z = Yδ ×Ye × Z̃. For the Borel σ-algebras we then have Z = Yδ ⊗ Ye ⊗ Z̃, and the state

is given by z = (yδ, ye, z̃). We denote the transition probability on Z by Pz(·|z) and the marginal

distributions by Pyδ(·|z), Pye(·|z), and Pz̃(·|z). The first shock component, yδ, affects discount factors

continuously, ensuring norm-continuity of the transition and thereby the existence of a solution to

the period-to-period problem. The second component, ye, corresponds to the noise component in

Duggan (2012) and allows us to cast the fixed point argument in terms of value functions that are

averages over ye. This trick ensures that the correspondence from value functions to updated value

functions is convex, which is necessary to apply the Debreu-Fan-Glicksberg theorem. Finally, the

third component, z̃, is the ‘standard’ shock component which has to satisfy only weak conditions.

In particular, it might include discrete shocks. More precisely, we make the following assumptions

about the three components of Z:

• yδ ∈ Yδ influences discount factors, but neither endowments nor the exogenous transition. The

conditional distribution of y′δ given z and z̃′, denoted by Pyδ(·|z, z̃′), is absolutely continuous

with respect to the Lebesgue measure µ on (Yδ,Yδ), where Yδ ⊂ R(A−1)H−1. The Radon-

Nikodym derivative of Pyδ(·|z, z̃′) with respect to µ is denoted by ryδ(·|z, z̃′) and vanishes at

the boundary of Yδ.

• ye ∈ Ye influences endowments but not discount factors. Conditional on next period’s z̃′, the

distribution of y′e does not depend on the current state z. The conditional distribution Pye(·|z̃′)

is absolutely continuous with respect to an atomless probability measure ν on (Ye,Ye), its
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Radon-Nikodym derivative is rye(.|z̃′).

• Pz̃(.|z) is absolutely continuous with respect to a (not necessarily non-atomic) probability

measure κ̃ on (Z̃, Z̃), its Radon-Nikodym derivative is rz̃(·|z).

Finally, we assume that individual endowments as well as dividends are bounded from below by

e > 0, and that discount factors δ : Yδ × Z̃ → D = [δ, δ](A−1)H satisfy the following two properties

that are crucial to guarantee norm-continuity of the transition:

• For each z̃ ∈ Z̃, δ(·, z̃) is a diffeomorphism from Yδ to the image of Yδ under δ(·, z̃).

• For each z̃ ∈ Z̃, the function
∑

(a,h)∈A−1
δa,h(·, z̃) is constant.

Our assumptions on utility and boundedness of endowments imply that there is a E such that for

any z ∈ Z and any (a, h) ∈ A

sup
λ∈∆AH−1

Dxua,h(Xa,h(z, λ)) · (Xa,h(z, λ)− ea,h(z)) < E,

where X(z, λ) is defined as in Equation (1) above . Our assumptions also imply that there exists a

ε > 0 such that for all z ∈ Z, (a, h) ∈ A, λ ∈ ∆AH−1, and λa,h ≤ ε:

Dxua,h(Xa,h(z, λ)) · (Xa,h(z, λ)− ea,h(z)) + δ
A
E < 0.

Using this ε > 0, we define

ε′ = ε
δ

AHδ

and choose the endogenous state space to be

Λ = {(λ̃a,h)(a,h)∈A−1
∈ ∆(A−1)H−1 : λ̃a,h ≥ ε′ for all (a, h) ∈ A−1},

with a typical element λ̃ ∈ Λ. This definition ensures that if in the current period all budget

constraints hold and all va,h ≥ 0, then next period’s endogenous state must lie in Λ, because this

period’s λ̃ ≥ ε. We define feasible γ to lie in a correspondence Γ : Λ ⇒ RAH+ with

Γ(λ̃) = {γ ∈ RAH+ : min
(a,h)∈A

λa,h∑
(a,h)∈A λa,h

≥ ε}

where

λ =
(

(γ1h)h∈H, (λ̃a,h + γa,h)(a,h)∈A−1

)
.

Theorem 2 A recursive equilibrium exists under the stated assumptions on preferences, and on the

stochastic process for endowments, dividends, and discount-factors.

To prove Theorem 2, we follow Duggan’s (2012) proof for the existence of a Markov-perfect equilib-

rium in stochastic games as close as possible. However, there are two important points where our
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general equilibrium model requires the proof to differ completely from the approach used for stochas-

tic games. First, norm-continuity is not an assumption in our framework, but rests on assumptions

about economic fundamentals, in particular on the shock to agents’ discounting, yδ. Second, the

existence of a solution to the period-to-period problem with borrowing constraints uses existence

results for complementarity problems. The following proof of Theorem 2 is detailed with regard

to these two points yet concise when it comes to those parts where we can closely follow Duggan

(2012).

As the shock component yδ ∈ Yδ is only transitory and does not influence endowments, it is

not included in the state space and we let the state space be S = Ye × Z̃×Λ with Borel σ-algebra

S.4 Furthermore, we define Q := Z̃×Λ with Borel σ-algebra Q and typical element q = (z̃, λ̃). We

can then decompose the state as S = Ye ×Q. Recall that the transition for the endogenous state

is determined as follows: Given current state s = (ye, z̃, λ̃) and ‘action’ γ, as well as next-period

shocks (y′δ, z̃
′), next period’s recursive weights are given by

λ̃′ā,h̄ =
δā,h̄(y′δ, z̃

′)λā−1,h̄∑
(a,h)∈A−1

δa,h(y′δ, z̃
′)λa−1,h

∀(ā, h̄) ∈ A−1,with λ =
(

(γ1h)h∈H, (λ̃a,h + γa,h)(a,h)∈A−1

)
.

(15)

As yδ does not influence the exogenous transition probability, we can define a transition probability

Pq : Ye × Z̃× graph(Γ)×Q → [0, 1] by demanding for all (ye, z̃, λ̃, γ) and B ∈ Q

Pq
(
B | ye, z̃, λ̃, γ

)
= Pz (C|z) ,

where

C = {z′ ∈ Z : ∃λ̃′ s.t. (z̃′, λ̃′) ∈ B and Equation (15) holds}.

A necessary step for obtaining existence is the observation that the mapping γ → Pq(.|s, γ) is

‘norm-continuous’, as Lemma 5 states.

Lemma 5 For all s ∈ S, γ ∈ Γ(λ̃) and each sequence γn → γ, γn ∈ Γ(λ̃) ∀n, the sequence Pq(.|s, γn)

converges to Pq(.|s, γ) in total variation, that is

sup
B∈Q
‖Pq(B|s, γn)− Pq(B|s, γ)‖ → 0.

Proof. To express Pq(.|s, γ) as an integral over B ⊂ Q = Z̃ × Λ we need to find the density

rλ̃(λ̃′|z, z̃′, γ) of λ̃′ with respect to the Lebesque measure µ on Λ. For this purpose, consider the

functions g(z,z̃′,γ) : Yδ → Λ with g(z,z̃′,γ)(yδ) = λ̃, where λ̃ is determined by Equation (15) given

yδ and (z, z̃′, γ). When its range is restricted to Λ̄(z,z̃′,γ) := g(z,z̃′,γ)(Yδ) ⊂ Λ, this function is a

4To simplify the notation, we occasionally use z = (yδ, ye, z̃) even when only (ye, z̃) matters, e.g. in X(z, λ̃).
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diffeomorphism, as δ(·, z̃′) is a diffeomorphism and
∑

(a,h)∈A−1
δa,h(·, z̃′) is constant.5 Then define

rλ̃(λ̃′|z, z̃′, γ) :=

ryδ(g
−1
(z,z̃′,γ)(λ̃

′)|z, z̃′) ·
∣∣∣J(g−1

(z,z̃′,γ)(λ̃
′))
∣∣∣ if ∃ yδ : g(z,z̃′,γ)(yδ) = λ̃′

0 otherwise,

where |J(·)| denotes the determinant of the Jacobian. With this definition of rλ̃, we get that

Pq(B|s, γ) =

∫
Z̃

∫
Yδ

1B
[
(z̃′, g(z,z̃′,γ)(y

′
δ)
]
ryδ(y

′
δ|z, z̃′)rz̃(z̃′|z)dµ(y′δ)dκ̃(z̃′)

=

∫
Z̃

∫
Λ̄(z,z̃′,γ)

1B

[
(z̃′, λ̃′)

]
rλ̃(λ̃′|z, z̃′, γ)rz̃(z̃

′|z)dµ(λ̃′)dκ̃(z̃′)

=

∫
Z̃

∫
Λ

1B

[
(z̃′, λ̃′)

]
rλ̃(λ̃′|z, z̃′, γ)rz̃(z̃

′|z)dµ(λ̃′)dκ̃(z̃′)

=

∫
B
rλ̃(λ̃′|z, z̃′, γ)rz̃(z̃

′|z)dµ(λ̃′)dκ̃(z̃′).

where the second equality is implied by the change of variables theorem (see, e.g., Theorem 13.49

in Aliprantis and Border), and the third equality follows from the fact that rλ̃(λ̃′|z, z̃′, γ) is zero

on Λ \ Λ̄(z,z̃′,γ). By Scheffe’s Lemma, the statement of Lemma 5 follows from the derived repre-

sentation of Pq(B|s, γ), if for all (z, z̃′, λ̃′): rλ̃(λ̃′|z, z̃′, γn) → rλ̃(λ̃′|z, z̃′, γ). This in turn follows

from the definition of ryδ as g
−1
(z,z̃′,γ)(λ̃

′) considered as a function of γ is continuous and continuously

differentiable (see Equation (15)), and ryδ(·|z, z̃′) is continuous and vanishes at the boundary. �

Let V be the set of all measurable functions V̄ : Q→ R(A−1)H
+ that are essentially bounded above

by δAE and below by 0. These can be thought of as ‘average’ value functions over all realisations

of ye. They lie in the space Ln∞(Q,Q, κ) of essentially bounded and measurable (equivalence classes

of) functions from Q to Rn with n = (A − 1)H and κ := κ̃ ⊗ µ. We endow Ln∞(Q,Q, κ) with the

weak* topology σ(Ln∞, L
n
1 ). The set V is then a non-empty, convex and compact subset of a locally

convex, Hausdorff topological vector space (see Duggan (2012), and references therein). Given any

V̄ ∈ V, we define for all (a, h) ∈ A and all (s, γ)

BV(a,h)(s, γ, V ) := Dxua,h(X(z, λ̂+ γ)) · (X(z, λ̂+ γ)− ea,h(z)) +

∫
q′
δ(q′, s, γ)V a+1,h(q′)dPq(q′|s, γ),

where λ̂a,h = λ̃a,h ∀(a, h) ∈ A−1, λ̂1,h = 0 ∀h ∈ H, and q′ = (z̃′, λ̃′), with λ̃′ given by Equation (15).

Note that when integrating over q′, we need to write the discount factor as depending on (q′, s, γ).

The reason is that yδ is not included in the state space. Yet given (s, γ), there is a unique δ that

is consistent with q′ = (z̃′, λ̃′) — as
∑

(a,h)∈A−1
δa,h(yδ, z̃

′) does not depend on yδ. The function

δ(q′, s, γ) is thus well defined. For the proof of Theorem 2 we will need the following properties of

BV .

Lemma 6 Given any V ∈ V and γ ∈ Γ(λ̃), the function BV (s, γ, V ) is measurable in s. For given s

the function is continuous in γ and V .
5Using the obvious embedding we now regard Λ as a positive-measure subset of R(A−1)H−1 rather than as a null

set in R(A−1)H .
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Proof. Let (a, h) ∈ A be arbitrary. We first show that BVa,h(s, γ, V ) is measurable in s. First,

Dxua,h(X(z, λ̂+γ)) · (X(z, λ̂+γ)−ea,h(z)) is continuous in λ̂ and γ for fixed z and it is measurable

in (z, λ̃) since by Theorem 18.19 in Aliprantis and Border (2006) X(z, λ) is measurable in (z, λ)

which is a continuous function of (z, λ̃). As yδ does not influence X(z, λ), measurability in (z, λ̃) =

(yδ, ye, z̃, λ̃) implies measurability in s = (ye, z̃, λ̃). Second,
∫
q′ δ(q

′, s, γ)V a+1,h(q′)dPq(q′|s, γ) is

measurable in s since the integrand is essentially bounded and Pq is a transition probability (see

Theorem 19.7 in Aliprantis and Border (2006)). To prove continuity in (γ, V ), fix s and consider a

sequence {γn, V n} converging to (γ, V ). For all (a, h) we then have∣∣∣∣∫
q′
δ(q′, s, γn)V

n
a+1,h(q′)dPq(q′|s, γn)−

∫
q′
δ(q′, s, γ)V a+1,h(q′)dPq(q′|s, γ)

∣∣∣∣
≤

∣∣∣∣∫
q′
δ(q′, s, γn)V

n
a+1,h(q′)dPq(q′|s, γn)−

∫
q′
δ(q′, s, γ)V

n
a+1,h(q′)dPq(q′|s, γ)

∣∣∣∣
+

∣∣∣∣∫
q′
δ(q′, s, γ)V

n
a+1,h(q′)dPq(q′|s, γ)−

∫
q′
δ(q′, s, γ)V a+1,h(q′)dPq(q′|s, γ)

∣∣∣∣
≤ δ

A+1
E ||Pq(.|s, γn)− Pq(.|s, γ)||+

∣∣∣∣∫
q′

(
V
m
a+1,h(q′)− V a+1,h(q′)

)
δ(q′, s, γ)rq(q

′|s, γ)dκ(q′)

∣∣∣∣→ 0,

where rq(q′|s, γ) := rλ̃(λ̃′|z, z̃′, γ)rz̃(z̃
′|z). The first step of this derivation is simply the triangle

inequality. For the second step we use that V m ∈ V is essentially bounded by δAE, and δ(q′, s, γ) is

bounded by δ. Finally, the first term goes to zero as Pq is norm-continuous, while the second term

goes to zero because {V n} converges to V in the weak* topology and δ(q′, s, γ)rq(q
′|s, γ) lies in L1.

�

The next lemma guarantees the existence of a policy that satisfies the equilibrium conditions,

given a V̄ next period.6

Lemma 7 For each s there exists a γ ≥ 0 such that for all (a, h),

BV̄a,h(s, γ, V̄ ) ≥ 0, BV̄a,h(s, γ, V̄ )γa,h = 0. (16)

To prove the lemma, we use the following result about non-linear complementarity problems. The

result follows directly from Theorem 1.4 in Kojima (1975).

Lemma 8 Given a continuous function f : Rn → Rn, suppose there exists a k > 0 such that for all

x ∈ {x ∈ Rn+ :
∑

i xi = k} it holds that maxi xifi(x) > 0. Then there exists x̄ ∈ Rn+ such that

f(x̄) ≥ 0 and x̄ · f(x̄) = 0.

With this result we can now prove Lemma 7.

Proof of Lemma 7. Since V̄ ≥ 0 and (λ̂a,h + γa,h) > 0 it suffices to show that there exists a set
6In our setup, this result plays the same role as the result that there always exists a mixed strategy Nash equilibrium

for the stage game plays in the stochastic game setup.
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{γ ∈ RAH+ :
∑

(a,h)∈A γa,h = k} as in Lemma 8 so that for all γ ∈ K

max
a,h

[γa,h(λ̂a,h + γa,h)Dxua,h(Xa,h(z, λ̂+ γ)) · (Xa,h(z, λ̂+ γ)− ea,h(z))] > 0.

Since by definition of X(·), (λ̂a,h + γa,h)Dxua,h(Xa,h(z, λ̂+ γ)) is identical across agents, and since

the tree pays strictly positive dividends, we must have that∑
(a,h)∈A

(λ̂a,h + γa,h)Dxua,h(Xa,h(z, λ̂+ γ)) · (Xa,h(z, λ̂+ γ)− ea,h(z)) > 0.

For sufficiently large k, it is easy to see that whenever γa,h = 0 we have Xa,h(z, λ̂ + γ) < ea,h(z)

and thus

(λ̂a,h + γa,h)Dxua,h(Xa,h(z, λ̂+ γ)) · (Xa,h(z, λ̂+ γ)− ea,h(z)) < 0.

This implies that

max
a,h

[γa,h(λ̂a,h + γa,h)Dxua,h(Xa,h(z, λ̂+ γ)) · (Xa,h(z, λ̂+ γ)− ea,h(z))] > 0. �

For the proof, it is crucial that we can restrict V̄ to be non-negative. It is subject to further

researcher to examine the case of positive f -endowments where W = V no longer holds and one

has to keep track of W -functions that can become negative.

Note that there is a compact set Γ ⊂ RAH+ so that the solution in the above lemma always lies in

this set, γ ∈ Γ. The fact that γ is bounded above follows from our assumptions on utility and the

fact that there must always be at least one unconstrained agent.

We can define non-empty correspondences s→ NV̄ (s) to contain all γ that solve Equation (16)

and s→ PV̄ (s) by PV̄ (s) = {BV̄ (s, γ, V̄ ) for γ ∈ NV̄ (s)}. Recall from Definition 18.1 in Aliprantis

and Border (2006) that a correspondence g : Z ⇒ Rn is called measurable if for any closed set

G ⊂ Rn it holds that {z ∈ Z : g(z) ∩G 6= ∅} ∈ Z.

Lemma 9 Suppose f(z, x) : Z×Rn → Rn is measurable in z and continuous in x. Define a correspon-

dence g : Z ⇒ Rn by

g(z) = {x ≥ 0 : f(z, x) ≥ 0 and x · f(z, x) = 0}.

If g(z) is uniformly bounded for all z, then it is measurable.

Proof. It is well known that a non-linear complementarity problem can be rewritten as a zero of a

system of equations. Namely,

x ≥ 0, f(z, x) ≥ 0 and x · f(z, x) = 0

is equivalent to the existence of (x, y) ≥ 0 such that

F (z, x, y) :=

 Xy

y − f(z, x)

 = 0, where X = diag(x).
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Therefore, for any x ∈ g(z) there is a y so that (x, y) are zeros of a system of continuous functions.

Corollary 18.8 of Aliprantis and Border (2006) shows that the correspondence mapping z to {(x, y) ∈

K : F (z, x, y) = 0}, with K compact, is measurable. Since projection is a continuous function, the

correspondence g(.) must be measurable. �

Lemma 10 For each V̄ ∈ V the correspondences NV̄ (s) and PV̄ (s) are measurable.

Proof. By Lemma 9 the correspondence s → NV̄ (s) must be measurable. Since PV̄ is the image

of N under a continuous function it is measurable as well. �

Lemma 10 is analogous to Lemma 2 in Duggan (2012). Note, however, that instead of measurability,

Duggan uses the weaker concept of lower measurability, which is sufficient to obtain all of his

subsequent results. In contrast, we can obtain measurability of NV̄ (s) and PV̄ (s) by Lemma

9 which states that the correspondence from the state to the solutions of the complementarity

problem is measurable. Following Duggan, we now define for each ye ∈ Ye, ΦV̄ (ye) as the set of

measurable selections of PV̄ weighted with the density rye(ye|z̃). More precisely, for f ∈ Ln1 we

have f ∈ ΦV̄ (ye) if and only if for κ-almost all q ∈ Q, f(q) ∈ rye(ye|z̃)PV̄ (q, ye). Then Φ : Ye ⇒ Ln1

assigns to each possible value of ye a set of functions in Ln1 . Integrating over ye (using the Bochner

integral, Definition 11.42 of Aliprantis and Border (2006)) one obtains a set EV̄ ⊂ V defined as

EV̄ = {
∫
φ(ye)dν(ye) : φ is a Bochner integrable selection of Φ}.

Lemmas 3-5 in Duggan establish that for any V̄ this is a non-empty, convex subset of V. The

convex-valuedness is remarkable since there is no direct way to apply Lyapunov’s theorem to infinite

dimensional spaces. However, one can exploit the product structure of the problem and apply

Lyapunov’s theorem for each q separately and then combine these, using a theorem of Artstein

(1989) to ensure measurability. Finally, Lemmas 6-7 in Duggan show that the correspondence

V̄ → EV̄ has closed graph. All in all, we thus have a correspondence from V to V that must have

a fixed point V ∗ ∈ EV
∗ by the Kakutani-Fan-Glicksberg fixed point theorem (Corollary 17.55 in

Aliprantis and Border (2006)). From this fixed point, we construct a recursive equilibrium as follows.

There must exist a ν-integrable function φ : Ye → RAH+ such that V̄ ∗ =
∫
φ(ye)dν(ye). Together

with Theorem 11.47 of Aliprantis and Border (2006) this implies that there exists a κ⊗ν -integrable

function F with F (s) ∈ rye(ye|z̃)PV̄ ∗(q, ye) such that for κ-almost all q, V̄ ∗(q) =
∫
F (q, ye)dν(ye).

The existence of a measurable function γ∗(·) is then guaranteed by Theorem 18.17 in Aliprantis and

Border (2006). These functions constitute a recursive equilibrium.

Finally, we would like to make two remarks about the presented proof. First, the proof strategy

does not require the OLG structure of the model and could thus also be used to prove existence

in a version of Chien and Lustig (2010) with a finite number of agents. Second, recently He and

Sun (2013) proved existence of stationary Markov perfect equilibria in stochastic games under a
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substantially more general assumption than the noise structure of Duggan (2012). Nevertheless, we

follow Duggan (2012), because his assumption has a more straightforward economic interpretation.
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